langchain/libs/community/langchain_community/embeddings/clarifai.py
mogith-pn 9e1ed17bfb
Community : Modified doc strings and example notebook for Clarifai (#15816)
Community : Modified doc strings and example notebook for Clarifai

Description:
1. Modified doc strings inside clarifai vectorstore class and
embeddings.
2. Modified notebook examples.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-01-10 19:33:10 -08:00

165 lines
5.4 KiB
Python

import logging
from typing import Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class ClarifaiEmbeddings(BaseModel, Embeddings):
"""Clarifai embedding models.
To use, you should have the ``clarifai`` python package installed, and the
environment variable ``CLARIFAI_PAT`` set with your personal access token or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.embeddings import ClarifaiEmbeddings
clarifai = ClarifaiEmbeddings(user_id=USER_ID,
app_id=APP_ID,
model_id=MODEL_ID)
(or)
Example_URL = "https://clarifai.com/clarifai/main/models/BAAI-bge-base-en-v15"
clarifai = ClarifaiEmbeddings(model_url=EXAMPLE_URL)
"""
model_url: Optional[str] = None
"""Model url to use."""
model_id: Optional[str] = None
"""Model id to use."""
model_version_id: Optional[str] = None
"""Model version id to use."""
app_id: Optional[str] = None
"""Clarifai application id to use."""
user_id: Optional[str] = None
"""Clarifai user id to use."""
pat: Optional[str] = None
"""Clarifai personal access token to use."""
api_base: str = "https://api.clarifai.com"
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that we have all required info to access Clarifai
platform and python package exists in environment."""
values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT")
user_id = values.get("user_id")
app_id = values.get("app_id")
model_id = values.get("model_id")
model_url = values.get("model_url")
if model_url is not None and model_id is not None:
raise ValueError("Please provide either model_url or model_id, not both.")
if model_url is None and model_id is None:
raise ValueError("Please provide one of model_url or model_id.")
if model_url is None and model_id is not None:
if user_id is None or app_id is None:
raise ValueError("Please provide a user_id and app_id.")
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Clarifai's embedding models.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
try:
from clarifai.client.input import Inputs
from clarifai.client.model import Model
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
if self.pat is not None:
pat = self.pat
if self.model_url is not None:
_model_init = Model(url=self.model_url, pat=pat)
else:
_model_init = Model(
model_id=self.model_id,
user_id=self.user_id,
app_id=self.app_id,
pat=pat,
)
input_obj = Inputs(pat=pat)
batch_size = 32
embeddings = []
try:
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
input_batch = [
input_obj.get_text_input(input_id=str(id), raw_text=inp)
for id, inp in enumerate(batch)
]
predict_response = _model_init.predict(input_batch)
embeddings.extend(
[
list(output.data.embeddings[0].vector)
for output in predict_response.outputs
]
)
except Exception as e:
logger.error(f"Predict failed, exception: {e}")
return embeddings
def embed_query(self, text: str) -> List[float]:
"""Call out to Clarifai's embedding models.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
try:
from clarifai.client.model import Model
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
if self.pat is not None:
pat = self.pat
if self.model_url is not None:
_model_init = Model(url=self.model_url, pat=pat)
else:
_model_init = Model(
model_id=self.model_id,
user_id=self.user_id,
app_id=self.app_id,
pat=pat,
)
try:
predict_response = _model_init.predict_by_bytes(
bytes(text, "utf-8"), input_type="text"
)
embeddings = [
list(op.data.embeddings[0].vector) for op in predict_response.outputs
]
except Exception as e:
logger.error(f"Predict failed, exception: {e}")
return embeddings[0]