langchain/libs/community/tests/unit_tests/chat_models/test_bedrock.py
Guillem Orellana Trullols aad2aa7188
community[patch]: BedrockChat -> Support Titan express as chat model (#15408)
Titan Express model was not supported as a chat model because LangChain
messages were not "translated" to a text prompt.

Co-authored-by: Guillem Orellana Trullols <guillem.orellana_trullols@siemens.com>
2024-01-22 11:37:23 -08:00

61 lines
1.8 KiB
Python

"""Test Anthropic Chat API wrapper."""
from typing import List
from unittest.mock import MagicMock
import pytest
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_community.chat_models import BedrockChat
from langchain_community.chat_models.meta import convert_messages_to_prompt_llama
@pytest.mark.parametrize(
("messages", "expected"),
[
([HumanMessage(content="Hello")], "[INST] Hello [/INST]"),
(
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
"[INST] Hello [/INST]\nAnswer:",
),
(
[
SystemMessage(content="You're an assistant"),
HumanMessage(content="Hello"),
AIMessage(content="Answer:"),
],
"<<SYS>> You're an assistant <</SYS>>\n[INST] Hello [/INST]\nAnswer:",
),
],
)
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
result = convert_messages_to_prompt_llama(messages)
assert result == expected
@pytest.mark.parametrize(
"model_id",
["anthropic.claude-v2", "amazon.titan-text-express-v1"],
)
def test_different_models_bedrock(model_id: str) -> None:
provider = model_id.split(".")[0]
client = MagicMock()
respbody = MagicMock()
if provider == "anthropic":
respbody.read.return_value = MagicMock(
decode=MagicMock(return_value=b'{"completion":"Hi back"}'),
)
client.invoke_model.return_value = {"body": respbody}
elif provider == "amazon":
respbody.read.return_value = '{"results": [{"outputText": "Hi back"}]}'
client.invoke_model.return_value = {"body": respbody}
model = BedrockChat(model_id=model_id, client=client)
# should not throw an error
model.invoke("hello there")