mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
166 lines
5.5 KiB
Python
166 lines
5.5 KiB
Python
"""Integration test for PubMed API Wrapper."""
|
|
from typing import Any, List
|
|
|
|
import pytest
|
|
from langchain_core.documents import Document
|
|
from langchain_core.tools import BaseTool
|
|
|
|
from langchain_community.tools import PubmedQueryRun
|
|
from langchain_community.utilities import PubMedAPIWrapper
|
|
|
|
xmltodict = pytest.importorskip("xmltodict")
|
|
|
|
|
|
@pytest.fixture
|
|
def api_client() -> PubMedAPIWrapper:
|
|
return PubMedAPIWrapper()
|
|
|
|
|
|
def test_run_success(api_client: PubMedAPIWrapper) -> None:
|
|
"""Test that returns the correct answer"""
|
|
|
|
search_string = (
|
|
"Examining the Validity of ChatGPT in Identifying "
|
|
"Relevant Nephrology Literature"
|
|
)
|
|
output = api_client.run(search_string)
|
|
test_string = (
|
|
"Examining the Validity of ChatGPT in Identifying "
|
|
"Relevant Nephrology Literature: Findings and Implications"
|
|
)
|
|
assert test_string in output
|
|
assert len(output) == api_client.doc_content_chars_max
|
|
|
|
|
|
def test_run_returns_no_result(api_client: PubMedAPIWrapper) -> None:
|
|
"""Test that gives no result."""
|
|
|
|
output = api_client.run("1605.08386WWW")
|
|
assert "No good PubMed Result was found" == output
|
|
|
|
|
|
def test_retrieve_article_returns_book_abstract(api_client: PubMedAPIWrapper) -> None:
|
|
"""Test that returns the excerpt of a book."""
|
|
|
|
output_nolabel = api_client.retrieve_article("25905357", "")
|
|
output_withlabel = api_client.retrieve_article("29262144", "")
|
|
test_string_nolabel = (
|
|
"Osteoporosis is a multifactorial disorder associated with low bone mass and "
|
|
"enhanced skeletal fragility. Although"
|
|
)
|
|
assert test_string_nolabel in output_nolabel["Summary"]
|
|
assert (
|
|
"Wallenberg syndrome was first described in 1808 by Gaspard Vieusseux. However,"
|
|
in output_withlabel["Summary"]
|
|
)
|
|
|
|
|
|
def test_retrieve_article_returns_article_abstract(
|
|
api_client: PubMedAPIWrapper,
|
|
) -> None:
|
|
"""Test that returns the abstract of an article."""
|
|
|
|
output_nolabel = api_client.retrieve_article("37666905", "")
|
|
output_withlabel = api_client.retrieve_article("37666551", "")
|
|
test_string_nolabel = (
|
|
"This work aims to: (1) Provide maximal hand force data on six different "
|
|
"grasp types for healthy subjects; (2) detect grasp types with maximal "
|
|
"force significantly affected by hand osteoarthritis (HOA) in women; (3) "
|
|
"look for predictors to detect HOA from the maximal forces using discriminant "
|
|
"analyses."
|
|
)
|
|
assert test_string_nolabel in output_nolabel["Summary"]
|
|
test_string_withlabel = (
|
|
"OBJECTIVES: To assess across seven hospitals from six different countries "
|
|
"the extent to which the COVID-19 pandemic affected the volumes of orthopaedic "
|
|
"hospital admissions and patient outcomes for non-COVID-19 patients admitted "
|
|
"for orthopaedic care."
|
|
)
|
|
assert test_string_withlabel in output_withlabel["Summary"]
|
|
|
|
|
|
def test_retrieve_article_no_abstract_available(api_client: PubMedAPIWrapper) -> None:
|
|
"""Test that returns 'No abstract available'."""
|
|
|
|
output = api_client.retrieve_article("10766884", "")
|
|
assert "No abstract available" == output["Summary"]
|
|
|
|
|
|
def assert_docs(docs: List[Document]) -> None:
|
|
for doc in docs:
|
|
assert doc.metadata
|
|
assert set(doc.metadata) == {
|
|
"Copyright Information",
|
|
"uid",
|
|
"Title",
|
|
"Published",
|
|
}
|
|
|
|
|
|
def test_load_success(api_client: PubMedAPIWrapper) -> None:
|
|
"""Test that returns one document"""
|
|
|
|
docs = api_client.load_docs("chatgpt")
|
|
assert len(docs) == api_client.top_k_results == 3
|
|
assert_docs(docs)
|
|
|
|
|
|
def test_load_returns_no_result(api_client: PubMedAPIWrapper) -> None:
|
|
"""Test that returns no docs"""
|
|
|
|
docs = api_client.load_docs("1605.08386WWW")
|
|
assert len(docs) == 0
|
|
|
|
|
|
def test_load_returns_limited_docs() -> None:
|
|
"""Test that returns several docs"""
|
|
expected_docs = 2
|
|
api_client = PubMedAPIWrapper(top_k_results=expected_docs)
|
|
docs = api_client.load_docs("ChatGPT")
|
|
assert len(docs) == expected_docs
|
|
assert_docs(docs)
|
|
|
|
|
|
def test_load_returns_full_set_of_metadata() -> None:
|
|
"""Test that returns several docs"""
|
|
api_client = PubMedAPIWrapper(load_max_docs=1, load_all_available_meta=True)
|
|
docs = api_client.load_docs("ChatGPT")
|
|
assert len(docs) == 3
|
|
for doc in docs:
|
|
assert doc.metadata
|
|
assert set(doc.metadata).issuperset(
|
|
{"Copyright Information", "Published", "Title", "uid"}
|
|
)
|
|
|
|
|
|
def _load_pubmed_from_universal_entry(**kwargs: Any) -> BaseTool:
|
|
from langchain.agents.load_tools import load_tools
|
|
|
|
tools = load_tools(["pubmed"], **kwargs)
|
|
assert len(tools) == 1, "loaded more than 1 tool"
|
|
return tools[0]
|
|
|
|
|
|
def test_load_pupmed_from_universal_entry() -> None:
|
|
pubmed_tool = _load_pubmed_from_universal_entry()
|
|
search_string = (
|
|
"Examining the Validity of ChatGPT in Identifying "
|
|
"Relevant Nephrology Literature"
|
|
)
|
|
output = pubmed_tool(search_string)
|
|
test_string = (
|
|
"Examining the Validity of ChatGPT in Identifying "
|
|
"Relevant Nephrology Literature: Findings and Implications"
|
|
)
|
|
assert test_string in output
|
|
|
|
|
|
def test_load_pupmed_from_universal_entry_with_params() -> None:
|
|
params = {
|
|
"top_k_results": 1,
|
|
}
|
|
pubmed_tool = _load_pubmed_from_universal_entry(**params)
|
|
assert isinstance(pubmed_tool, PubmedQueryRun)
|
|
wp = pubmed_tool.api_wrapper
|
|
assert wp.top_k_results == 1, "failed to assert top_k_results"
|