langchain/libs/community/tests/integration_tests/llms/test_openai.py
Erick Friis ebc75c5ca7
openai[minor]: implement langchain-openai package (#15503)
Todo

- [x] copy over integration tests
- [x] update docs with new instructions in #15513 
- [x] add linear ticket to bump core -> community, community->langchain,
and core->openai deps
- [ ] (optional): add `pip install langchain-openai` command to each
notebook using it
- [x] Update docstrings to not need `openai` install
- [x] Add serialization
- [x] deprecate old models

Contributor steps:

- [x] Add secret names to manual integrations workflow in
.github/workflows/_integration_test.yml
- [x] Add secrets to release workflow (for pre-release testing) in
.github/workflows/_release.yml

Maintainer steps (Contributors should not do these):

- [x] set up pypi and test pypi projects
- [x] add credential secrets to Github Actions
- [ ] add package to conda-forge


Functional changes to existing classes:

- now relies on openai client v1 (1.6.1) via concrete dep in
langchain-openai package

Codebase organization

- some function calling stuff moved to
`langchain_core.utils.function_calling` in order to be used in both
community and langchain-openai
2024-01-05 15:03:28 -08:00

264 lines
7.7 KiB
Python

"""Test OpenAI API wrapper."""
from pathlib import Path
from typing import Generator
import pytest
from langchain_core.callbacks import CallbackManager
from langchain_core.outputs import LLMResult
from langchain_community.chat_models.openai import ChatOpenAI
from langchain_community.llms.loading import load_llm
from langchain_community.llms.openai import OpenAI
from tests.unit_tests.callbacks.fake_callback_handler import (
FakeCallbackHandler,
)
@pytest.mark.scheduled
def test_openai_call() -> None:
"""Test valid call to openai."""
llm = OpenAI()
output = llm("Say something nice:")
assert isinstance(output, str)
def test_openai_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
llm = OpenAI(max_tokens=10)
llm_result = llm.generate(["Hello, how are you?"])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == llm.model_name
def test_openai_stop_valid() -> None:
"""Test openai stop logic on valid configuration."""
query = "write an ordered list of five items"
first_llm = OpenAI(stop="3", temperature=0)
first_output = first_llm(query)
second_llm = OpenAI(temperature=0)
second_output = second_llm(query, stop=["3"])
# Because it stops on new lines, shouldn't return anything
assert first_output == second_output
def test_openai_stop_error() -> None:
"""Test openai stop logic on bad configuration."""
llm = OpenAI(stop="3", temperature=0)
with pytest.raises(ValueError):
llm("write an ordered list of five items", stop=["\n"])
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an OpenAI LLM."""
llm = OpenAI(max_tokens=10)
llm.save(file_path=tmp_path / "openai.yaml")
loaded_llm = load_llm(tmp_path / "openai.yaml")
assert loaded_llm == llm
@pytest.mark.scheduled
def test_openai_streaming() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
generator = llm.stream("I'm Pickle Rick")
assert isinstance(generator, Generator)
for token in generator:
assert isinstance(token, str)
@pytest.mark.scheduled
async def test_openai_astream() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token, str)
@pytest.mark.scheduled
async def test_openai_abatch() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
async def test_openai_abatch_tags() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token, str)
@pytest.mark.scheduled
def test_openai_batch() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
@pytest.mark.scheduled
async def test_openai_ainvoke() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result, str)
@pytest.mark.scheduled
def test_openai_invoke() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result, str)
@pytest.mark.scheduled
def test_openai_multiple_prompts() -> None:
"""Test completion with multiple prompts."""
llm = OpenAI(max_tokens=10)
output = llm.generate(["I'm Pickle Rick", "I'm Pickle Rick"])
assert isinstance(output, LLMResult)
assert isinstance(output.generations, list)
assert len(output.generations) == 2
def test_openai_streaming_best_of_error() -> None:
"""Test validation for streaming fails if best_of is not 1."""
with pytest.raises(ValueError):
OpenAI(best_of=2, streaming=True)
def test_openai_streaming_n_error() -> None:
"""Test validation for streaming fails if n is not 1."""
with pytest.raises(ValueError):
OpenAI(n=2, streaming=True)
def test_openai_streaming_multiple_prompts_error() -> None:
"""Test validation for streaming fails if multiple prompts are given."""
with pytest.raises(ValueError):
OpenAI(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"])
@pytest.mark.scheduled
def test_openai_streaming_call() -> None:
"""Test valid call to openai."""
llm = OpenAI(max_tokens=10, streaming=True)
output = llm("Say foo:")
assert isinstance(output, str)
def test_openai_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
llm("Write me a sentence with 100 words.")
assert callback_handler.llm_streams == 10
@pytest.mark.scheduled
async def test_openai_async_generate() -> None:
"""Test async generation."""
llm = OpenAI(max_tokens=10)
output = await llm.agenerate(["Hello, how are you?"])
assert isinstance(output, LLMResult)
async def test_openai_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
result = await llm.agenerate(["Write me a sentence with 100 words."])
assert callback_handler.llm_streams == 10
assert isinstance(result, LLMResult)
def test_openai_modelname_to_contextsize_valid() -> None:
"""Test model name to context size on a valid model."""
assert OpenAI().modelname_to_contextsize("davinci") == 2049
def test_openai_modelname_to_contextsize_invalid() -> None:
"""Test model name to context size on an invalid model."""
with pytest.raises(ValueError):
OpenAI().modelname_to_contextsize("foobar")
_EXPECTED_NUM_TOKENS = {
"ada": 17,
"babbage": 17,
"curie": 17,
"davinci": 17,
"gpt-4": 12,
"gpt-4-32k": 12,
"gpt-3.5-turbo": 12,
}
_MODELS = models = [
"ada",
"babbage",
"curie",
"davinci",
]
_CHAT_MODELS = [
"gpt-4",
"gpt-4-32k",
"gpt-3.5-turbo",
]
@pytest.mark.parametrize("model", _MODELS)
def test_openai_get_num_tokens(model: str) -> None:
"""Test get_tokens."""
llm = OpenAI(model=model)
assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model]
@pytest.mark.parametrize("model", _CHAT_MODELS)
def test_chat_openai_get_num_tokens(model: str) -> None:
"""Test get_tokens."""
llm = ChatOpenAI(model=model)
assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model]
@pytest.fixture
def mock_completion() -> dict:
return {
"id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ",
"object": "text_completion",
"created": 1689989000,
"model": "gpt-3.5-turbo-instruct",
"choices": [
{"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3},
}