langchain/libs/community/tests/integration_tests/embeddings/test_openai.py
Bagatur ed58eeb9c5
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00

90 lines
2.7 KiB
Python

"""Test openai embeddings."""
import numpy as np
import pytest
from langchain_community.embeddings.openai import OpenAIEmbeddings
@pytest.mark.scheduled
def test_openai_embedding_documents() -> None:
"""Test openai embeddings."""
documents = ["foo bar"]
embedding = OpenAIEmbeddings()
output = embedding.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) == 1536
@pytest.mark.scheduled
def test_openai_embedding_documents_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = OpenAIEmbeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = embedding.embed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.scheduled
async def test_openai_embedding_documents_async_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = OpenAIEmbeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = await embedding.aembed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.scheduled
def test_openai_embedding_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = OpenAIEmbeddings()
output = embedding.embed_query(document)
assert len(output) == 1536
@pytest.mark.scheduled
async def test_openai_embedding_async_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = OpenAIEmbeddings()
output = await embedding.aembed_query(document)
assert len(output) == 1536
@pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.")
@pytest.mark.scheduled
def test_openai_embedding_with_empty_string() -> None:
"""Test openai embeddings with empty string."""
import openai
document = ["", "abc"]
embedding = OpenAIEmbeddings()
output = embedding.embed_documents(document)
assert len(output) == 2
assert len(output[0]) == 1536
expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[
"data"
][0]["embedding"]
assert np.allclose(output[0], expected_output)
assert len(output[1]) == 1536
@pytest.mark.scheduled
def test_embed_documents_normalized() -> None:
output = OpenAIEmbeddings().embed_documents(["foo walked to the market"])
assert np.isclose(np.linalg.norm(output[0]), 1.0)
@pytest.mark.scheduled
def test_embed_query_normalized() -> None:
output = OpenAIEmbeddings().embed_query("foo walked to the market")
assert np.isclose(np.linalg.norm(output), 1.0)