mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
169 lines
3.5 KiB
Plaintext
169 lines
3.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "73f9bf40",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Serialization\n",
|
|
"\n",
|
|
"This notebook walks through how to write and read an LLM Configuration to and from disk. This is useful if you want to save the configuration for a given LLM (e.g., the provider, the temperature, etc)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "9c9fb6ff",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.llms import OpenAI\n",
|
|
"from langchain.llms.loading import load_llm"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "88ce018b",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Loading\n",
|
|
"First, lets go over loading an LLM from disk. LLMs can be saved on disk in two formats: json or yaml. No matter the extension, they are loaded in the same way."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f12b28f3",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"{\r\n",
|
|
" \"model_name\": \"text-davinci-003\",\r\n",
|
|
" \"temperature\": 0.7,\r\n",
|
|
" \"max_tokens\": 256,\r\n",
|
|
" \"top_p\": 1.0,\r\n",
|
|
" \"frequency_penalty\": 0.0,\r\n",
|
|
" \"presence_penalty\": 0.0,\r\n",
|
|
" \"n\": 1,\r\n",
|
|
" \"best_of\": 1,\r\n",
|
|
" \"request_timeout\": null,\r\n",
|
|
" \"_type\": \"openai\"\r\n",
|
|
"}"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"!cat llm.json"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "9ab709fc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = load_llm(\"llm.json\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "095b1d56",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"_type: openai\r\n",
|
|
"best_of: 1\r\n",
|
|
"frequency_penalty: 0.0\r\n",
|
|
"max_tokens: 256\r\n",
|
|
"model_name: text-davinci-003\r\n",
|
|
"n: 1\r\n",
|
|
"presence_penalty: 0.0\r\n",
|
|
"request_timeout: null\r\n",
|
|
"temperature: 0.7\r\n",
|
|
"top_p: 1.0\r\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"!cat llm.yaml"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "8cafaafe",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = load_llm(\"llm.yaml\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ab3e4223",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Saving\n",
|
|
"If you want to go from an LLM in memory to a serialized version of it, you can do so easily by calling the `.save` method. Again, this supports both json and yaml."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "b38f685d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm.save(\"llm.json\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "b7365503",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm.save(\"llm.yaml\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "68e45b1c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|