langchain/docs/extras/integrations/llms/rellm_experimental.ipynb
2023-07-23 23:23:16 -07:00

214 lines
5.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "fdd7864c-93e6-4eb4-a923-b80d2ae4377d",
"metadata": {},
"source": [
"# RELLM\n",
"\n",
"[RELLM](https://github.com/r2d4/rellm) is a library that wraps local Hugging Face pipeline models for structured decoding.\n",
"\n",
"It works by generating tokens one at a time. At each step, it masks tokens that don't conform to the provided partial regular expression.\n",
"\n",
"\n",
"**Warning - this module is still experimental**"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1617e327-d9a2-4ab6-aa9f-30a3167a3393",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install rellm > /dev/null"
]
},
{
"cell_type": "markdown",
"id": "66bd89f1-8daa-433d-bb8f-5b0b3ae34b00",
"metadata": {},
"source": [
"### Hugging Face Baseline\n",
"\n",
"First, let's establish a qualitative baseline by checking the output of the model without structured decoding."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d4d616ae-4d11-425f-b06c-c706d0386c68",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import logging\n",
"\n",
"logging.basicConfig(level=logging.ERROR)\n",
"prompt = \"\"\"Human: \"What's the capital of the United States?\"\n",
"AI Assistant:{\n",
" \"action\": \"Final Answer\",\n",
" \"action_input\": \"The capital of the United States is Washington D.C.\"\n",
"}\n",
"Human: \"What's the capital of Pennsylvania?\"\n",
"AI Assistant:{\n",
" \"action\": \"Final Answer\",\n",
" \"action_input\": \"The capital of Pennsylvania is Harrisburg.\"\n",
"}\n",
"Human: \"What 2 + 5?\"\n",
"AI Assistant:{\n",
" \"action\": \"Final Answer\",\n",
" \"action_input\": \"2 + 5 = 7.\"\n",
"}\n",
"Human: 'What's the capital of Maryland?'\n",
"AI Assistant:\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9148e4b8-d370-4c05-a873-c121b65057b5",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"generations=[[Generation(text=' \"What\\'s the capital of Maryland?\"\\n', generation_info=None)]] llm_output=None\n"
]
}
],
"source": [
"from transformers import pipeline\n",
"from langchain.llms import HuggingFacePipeline\n",
"\n",
"hf_model = pipeline(\n",
" \"text-generation\", model=\"cerebras/Cerebras-GPT-590M\", max_new_tokens=200\n",
")\n",
"\n",
"original_model = HuggingFacePipeline(pipeline=hf_model)\n",
"\n",
"generated = original_model.generate([prompt], stop=[\"Human:\"])\n",
"print(generated)"
]
},
{
"cell_type": "markdown",
"id": "b6e7b9cf-8ce5-4f87-b4bf-100321ad2dd1",
"metadata": {},
"source": [
"***That's not so impressive, is it? It didn't answer the question and it didn't follow the JSON format at all! Let's try with the structured decoder.***"
]
},
{
"cell_type": "markdown",
"id": "96115154-a90a-46cb-9759-573860fc9b79",
"metadata": {},
"source": [
"## RELLM LLM Wrapper\n",
"\n",
"Let's try that again, now providing a regex to match the JSON structured format."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "65c12e2a-bd7f-4cf0-8ef8-92cfa31c92ef",
"metadata": {},
"outputs": [],
"source": [
"import regex # Note this is the regex library NOT python's re stdlib module\n",
"\n",
"# We'll choose a regex that matches to a structured json string that looks like:\n",
"# {\n",
"# \"action\": \"Final Answer\",\n",
"# \"action_input\": string or dict\n",
"# }\n",
"pattern = regex.compile(\n",
" r'\\{\\s*\"action\":\\s*\"Final Answer\",\\s*\"action_input\":\\s*(\\{.*\\}|\"[^\"]*\")\\s*\\}\\nHuman:'\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "de85b1f8-b405-4291-b6d0-4b2c56e77ad6",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\"action\": \"Final Answer\",\n",
" \"action_input\": \"The capital of Maryland is Baltimore.\"\n",
"}\n",
"\n"
]
}
],
"source": [
"from langchain.experimental.llms import RELLM\n",
"\n",
"model = RELLM(pipeline=hf_model, regex=pattern, max_new_tokens=200)\n",
"\n",
"generated = model.predict(prompt, stop=[\"Human:\"])\n",
"print(generated)"
]
},
{
"cell_type": "markdown",
"id": "32077d74-0605-4138-9a10-0ce36637040d",
"metadata": {
"tags": []
},
"source": [
"**Voila! Free of parsing errors.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4bd208a1-779c-4c47-97d9-9115d15d441f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}