mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
4eda647fdd
Previously, if this did not find a mypy cache then it wouldnt run this makes it always run adding mypy ignore comments with existing uncaught issues to unblock other prs --------- Co-authored-by: Erick Friis <erick@langchain.dev> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
221 lines
7.1 KiB
Python
221 lines
7.1 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from enum import Enum
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
|
|
|
from langchain_core.chat_history import BaseChatMessageHistory
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from zep_python import Memory, MemorySearchResult, Message, NotFoundError
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class SearchScope(str, Enum):
|
|
"""Which documents to search. Messages or Summaries?"""
|
|
|
|
messages = "messages"
|
|
"""Search chat history messages."""
|
|
summary = "summary"
|
|
"""Search chat history summaries."""
|
|
|
|
|
|
class SearchType(str, Enum):
|
|
"""Enumerator of the types of search to perform."""
|
|
|
|
similarity = "similarity"
|
|
"""Similarity search."""
|
|
mmr = "mmr"
|
|
"""Maximal Marginal Relevance reranking of similarity search."""
|
|
|
|
|
|
class ZepChatMessageHistory(BaseChatMessageHistory):
|
|
"""Chat message history that uses Zep as a backend.
|
|
|
|
Recommended usage::
|
|
|
|
# Set up Zep Chat History
|
|
zep_chat_history = ZepChatMessageHistory(
|
|
session_id=session_id,
|
|
url=ZEP_API_URL,
|
|
api_key=<your_api_key>,
|
|
)
|
|
|
|
# Use a standard ConversationBufferMemory to encapsulate the Zep chat history
|
|
memory = ConversationBufferMemory(
|
|
memory_key="chat_history", chat_memory=zep_chat_history
|
|
)
|
|
|
|
|
|
Zep provides long-term conversation storage for LLM apps. The server stores,
|
|
summarizes, embeds, indexes, and enriches conversational AI chat
|
|
histories, and exposes them via simple, low-latency APIs.
|
|
|
|
For server installation instructions and more, see:
|
|
https://docs.getzep.com/deployment/quickstart/
|
|
|
|
This class is a thin wrapper around the zep-python package. Additional
|
|
Zep functionality is exposed via the `zep_summary` and `zep_messages`
|
|
properties.
|
|
|
|
For more information on the zep-python package, see:
|
|
https://github.com/getzep/zep-python
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
session_id: str,
|
|
url: str = "http://localhost:8000",
|
|
api_key: Optional[str] = None,
|
|
) -> None:
|
|
try:
|
|
from zep_python import ZepClient
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import zep-python package. "
|
|
"Please install it with `pip install zep-python`."
|
|
)
|
|
|
|
self.zep_client = ZepClient(base_url=url, api_key=api_key)
|
|
self.session_id = session_id
|
|
|
|
@property
|
|
def messages(self) -> List[BaseMessage]: # type: ignore
|
|
"""Retrieve messages from Zep memory"""
|
|
zep_memory: Optional[Memory] = self._get_memory()
|
|
if not zep_memory:
|
|
return []
|
|
|
|
messages: List[BaseMessage] = []
|
|
# Extract summary, if present, and messages
|
|
if zep_memory.summary:
|
|
if len(zep_memory.summary.content) > 0:
|
|
messages.append(SystemMessage(content=zep_memory.summary.content))
|
|
if zep_memory.messages:
|
|
msg: Message
|
|
for msg in zep_memory.messages:
|
|
metadata: Dict = {
|
|
"uuid": msg.uuid,
|
|
"created_at": msg.created_at,
|
|
"token_count": msg.token_count,
|
|
"metadata": msg.metadata,
|
|
}
|
|
if msg.role == "ai":
|
|
messages.append(
|
|
AIMessage(content=msg.content, additional_kwargs=metadata)
|
|
)
|
|
else:
|
|
messages.append(
|
|
HumanMessage(content=msg.content, additional_kwargs=metadata)
|
|
)
|
|
|
|
return messages
|
|
|
|
@property
|
|
def zep_messages(self) -> List[Message]:
|
|
"""Retrieve summary from Zep memory"""
|
|
zep_memory: Optional[Memory] = self._get_memory()
|
|
if not zep_memory:
|
|
return []
|
|
|
|
return zep_memory.messages
|
|
|
|
@property
|
|
def zep_summary(self) -> Optional[str]:
|
|
"""Retrieve summary from Zep memory"""
|
|
zep_memory: Optional[Memory] = self._get_memory()
|
|
if not zep_memory or not zep_memory.summary:
|
|
return None
|
|
|
|
return zep_memory.summary.content
|
|
|
|
def _get_memory(self) -> Optional[Memory]:
|
|
"""Retrieve memory from Zep"""
|
|
from zep_python import NotFoundError
|
|
|
|
try:
|
|
zep_memory: Memory = self.zep_client.memory.get_memory(self.session_id)
|
|
except NotFoundError:
|
|
logger.warning(
|
|
f"Session {self.session_id} not found in Zep. Returning None"
|
|
)
|
|
return None
|
|
return zep_memory
|
|
|
|
def add_user_message( # type: ignore[override]
|
|
self, message: str, metadata: Optional[Dict[str, Any]] = None
|
|
) -> None:
|
|
"""Convenience method for adding a human message string to the store.
|
|
|
|
Args:
|
|
message: The string contents of a human message.
|
|
metadata: Optional metadata to attach to the message.
|
|
"""
|
|
self.add_message(HumanMessage(content=message), metadata=metadata)
|
|
|
|
def add_ai_message( # type: ignore[override]
|
|
self, message: str, metadata: Optional[Dict[str, Any]] = None
|
|
) -> None:
|
|
"""Convenience method for adding an AI message string to the store.
|
|
|
|
Args:
|
|
message: The string contents of an AI message.
|
|
metadata: Optional metadata to attach to the message.
|
|
"""
|
|
self.add_message(AIMessage(content=message), metadata=metadata)
|
|
|
|
def add_message(
|
|
self, message: BaseMessage, metadata: Optional[Dict[str, Any]] = None
|
|
) -> None:
|
|
"""Append the message to the Zep memory history"""
|
|
from zep_python import Memory, Message
|
|
|
|
zep_message = Message(
|
|
content=message.content, role=message.type, metadata=metadata
|
|
)
|
|
zep_memory = Memory(messages=[zep_message])
|
|
|
|
self.zep_client.memory.add_memory(self.session_id, zep_memory)
|
|
|
|
def search(
|
|
self,
|
|
query: str,
|
|
metadata: Optional[Dict] = None,
|
|
search_scope: SearchScope = SearchScope.messages,
|
|
search_type: SearchType = SearchType.similarity,
|
|
mmr_lambda: Optional[float] = None,
|
|
limit: Optional[int] = None,
|
|
) -> List[MemorySearchResult]:
|
|
"""Search Zep memory for messages matching the query"""
|
|
from zep_python import MemorySearchPayload
|
|
|
|
payload = MemorySearchPayload(
|
|
text=query,
|
|
metadata=metadata,
|
|
search_scope=search_scope,
|
|
search_type=search_type,
|
|
mmr_lambda=mmr_lambda,
|
|
)
|
|
|
|
return self.zep_client.memory.search_memory(
|
|
self.session_id, payload, limit=limit
|
|
)
|
|
|
|
def clear(self) -> None:
|
|
"""Clear session memory from Zep. Note that Zep is long-term storage for memory
|
|
and this is not advised unless you have specific data retention requirements.
|
|
"""
|
|
try:
|
|
self.zep_client.memory.delete_memory(self.session_id)
|
|
except NotFoundError:
|
|
logger.warning(
|
|
f"Session {self.session_id} not found in Zep. Skipping delete."
|
|
)
|