langchain/libs/partners/anthropic/tests/unit_tests/test_chat_models.py
ccurme fbfed65fb1
core, partners: add token usage attribute to AIMessage (#21944)
```python
class UsageMetadata(TypedDict):
    """Usage metadata for a message, such as token counts.

    Attributes:
        input_tokens: (int) count of input (or prompt) tokens
        output_tokens: (int) count of output (or completion) tokens
        total_tokens: (int) total token count
    """

    input_tokens: int
    output_tokens: int
    total_tokens: int
```
```python
class AIMessage(BaseMessage):
    ...
    usage_metadata: Optional[UsageMetadata] = None
    """If provided, token usage information associated with the message."""
    ...
```
2024-05-23 14:21:58 -04:00

517 lines
15 KiB
Python

"""Test chat model integration."""
import os
from typing import Any, Callable, Dict, Literal, Type, cast
import pytest
from anthropic.types import ContentBlock, Message, Usage
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage, ToolMessage
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr
from langchain_core.runnables import RunnableBinding
from langchain_core.tools import BaseTool
from pytest import CaptureFixture, MonkeyPatch
from langchain_anthropic import ChatAnthropic
from langchain_anthropic.chat_models import (
_format_messages,
_merge_messages,
convert_to_anthropic_tool,
)
os.environ["ANTHROPIC_API_KEY"] = "foo"
def test_initialization() -> None:
"""Test chat model initialization."""
for model in [
ChatAnthropic(model_name="claude-instant-1.2", api_key="xyz", timeout=2),
ChatAnthropic(
model="claude-instant-1.2",
anthropic_api_key="xyz",
default_request_timeout=2,
),
]:
assert model.model == "claude-instant-1.2"
assert cast(SecretStr, model.anthropic_api_key).get_secret_value() == "xyz"
assert model.default_request_timeout == 2.0
@pytest.mark.requires("anthropic")
def test_anthropic_model_name_param() -> None:
llm = ChatAnthropic(model_name="foo")
assert llm.model == "foo"
@pytest.mark.requires("anthropic")
def test_anthropic_model_param() -> None:
llm = ChatAnthropic(model="foo")
assert llm.model == "foo"
@pytest.mark.requires("anthropic")
def test_anthropic_model_kwargs() -> None:
llm = ChatAnthropic(model_name="foo", model_kwargs={"foo": "bar"})
assert llm.model_kwargs == {"foo": "bar"}
@pytest.mark.requires("anthropic")
def test_anthropic_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
ChatAnthropic(model="foo", model_kwargs={"max_tokens_to_sample": 5})
@pytest.mark.requires("anthropic")
def test_anthropic_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = ChatAnthropic(model="foo", foo="bar")
assert llm.model_kwargs == {"foo": "bar"}
@pytest.mark.requires("anthropic")
def test_anthropic_initialization() -> None:
"""Test anthropic initialization."""
# Verify that chat anthropic can be initialized using a secret key provided
# as a parameter rather than an environment variable.
ChatAnthropic(model="test", anthropic_api_key="test")
def test__format_output() -> None:
anthropic_msg = Message(
id="foo",
content=[ContentBlock(type="text", text="bar")],
model="baz",
role="assistant",
stop_reason=None,
stop_sequence=None,
usage=Usage(input_tokens=2, output_tokens=1),
type="message",
)
expected = ChatResult(
generations=[
ChatGeneration(
message=AIMessage(
"bar",
usage_metadata={
"input_tokens": 2,
"output_tokens": 1,
"total_tokens": 3,
},
)
),
],
llm_output={
"id": "foo",
"model": "baz",
"stop_reason": None,
"stop_sequence": None,
"usage": {"input_tokens": 2, "output_tokens": 1},
},
)
llm = ChatAnthropic(model="test", anthropic_api_key="test")
actual = llm._format_output(anthropic_msg)
assert expected == actual
def test__merge_messages() -> None:
messages = [
SystemMessage("foo"),
HumanMessage("bar"),
AIMessage(
[
{"text": "baz", "type": "text"},
{
"tool_input": {"a": "b"},
"type": "tool_use",
"id": "1",
"text": None,
"name": "buz",
},
{"text": "baz", "type": "text"},
{
"tool_input": {"a": "c"},
"type": "tool_use",
"id": "2",
"text": None,
"name": "blah",
},
]
),
ToolMessage("buz output", tool_call_id="1"),
ToolMessage("blah output", tool_call_id="2"),
HumanMessage("next thing"),
]
expected = [
SystemMessage("foo"),
HumanMessage("bar"),
AIMessage(
[
{"text": "baz", "type": "text"},
{
"tool_input": {"a": "b"},
"type": "tool_use",
"id": "1",
"text": None,
"name": "buz",
},
{"text": "baz", "type": "text"},
{
"tool_input": {"a": "c"},
"type": "tool_use",
"id": "2",
"text": None,
"name": "blah",
},
]
),
HumanMessage(
[
{"type": "tool_result", "content": "buz output", "tool_use_id": "1"},
{"type": "tool_result", "content": "blah output", "tool_use_id": "2"},
{"type": "text", "text": "next thing"},
]
),
]
actual = _merge_messages(messages)
assert expected == actual
def test__merge_messages_mutation() -> None:
original_messages = [
HumanMessage([{"type": "text", "text": "bar"}]),
HumanMessage("next thing"),
]
messages = [
HumanMessage([{"type": "text", "text": "bar"}]),
HumanMessage("next thing"),
]
expected = [
HumanMessage(
[{"type": "text", "text": "bar"}, {"type": "text", "text": "next thing"}]
),
]
actual = _merge_messages(messages)
assert expected == actual
assert messages == original_messages
@pytest.fixture()
def pydantic() -> Type[BaseModel]:
class dummy_function(BaseModel):
"""dummy function"""
arg1: int = Field(..., description="foo")
arg2: Literal["bar", "baz"] = Field(..., description="one of 'bar', 'baz'")
return dummy_function
@pytest.fixture()
def function() -> Callable:
def dummy_function(arg1: int, arg2: Literal["bar", "baz"]) -> None:
"""dummy function
Args:
arg1: foo
arg2: one of 'bar', 'baz'
"""
pass
return dummy_function
@pytest.fixture()
def dummy_tool() -> BaseTool:
class Schema(BaseModel):
arg1: int = Field(..., description="foo")
arg2: Literal["bar", "baz"] = Field(..., description="one of 'bar', 'baz'")
class DummyFunction(BaseTool):
args_schema: Type[BaseModel] = Schema
name: str = "dummy_function"
description: str = "dummy function"
def _run(self, *args: Any, **kwargs: Any) -> Any:
pass
return DummyFunction()
@pytest.fixture()
def json_schema() -> Dict:
return {
"title": "dummy_function",
"description": "dummy function",
"type": "object",
"properties": {
"arg1": {"description": "foo", "type": "integer"},
"arg2": {
"description": "one of 'bar', 'baz'",
"enum": ["bar", "baz"],
"type": "string",
},
},
"required": ["arg1", "arg2"],
}
@pytest.fixture()
def openai_function() -> Dict:
return {
"name": "dummy_function",
"description": "dummy function",
"parameters": {
"type": "object",
"properties": {
"arg1": {"description": "foo", "type": "integer"},
"arg2": {
"description": "one of 'bar', 'baz'",
"enum": ["bar", "baz"],
"type": "string",
},
},
"required": ["arg1", "arg2"],
},
}
def test_convert_to_anthropic_tool(
pydantic: Type[BaseModel],
function: Callable,
dummy_tool: BaseTool,
json_schema: Dict,
openai_function: Dict,
) -> None:
expected = {
"name": "dummy_function",
"description": "dummy function",
"input_schema": {
"type": "object",
"properties": {
"arg1": {"description": "foo", "type": "integer"},
"arg2": {
"description": "one of 'bar', 'baz'",
"enum": ["bar", "baz"],
"type": "string",
},
},
"required": ["arg1", "arg2"],
},
}
for fn in (pydantic, function, dummy_tool, json_schema, expected, openai_function):
actual = convert_to_anthropic_tool(fn) # type: ignore
assert actual == expected
def test__format_messages_with_tool_calls() -> None:
system = SystemMessage("fuzz")
human = HumanMessage("foo")
ai = AIMessage(
"",
tool_calls=[{"name": "bar", "id": "1", "args": {"baz": "buzz"}}],
)
tool = ToolMessage(
"blurb",
tool_call_id="1",
)
messages = [system, human, ai, tool]
expected = (
"fuzz",
[
{"role": "user", "content": "foo"},
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"name": "bar",
"id": "1",
"input": {"baz": "buzz"},
}
],
},
{
"role": "user",
"content": [
{"type": "tool_result", "content": "blurb", "tool_use_id": "1"}
],
},
],
)
actual = _format_messages(messages)
assert expected == actual
def test__format_messages_with_str_content_and_tool_calls() -> None:
system = SystemMessage("fuzz")
human = HumanMessage("foo")
# If content and tool_calls are specified and content is a string, then both are
# included with content first.
ai = AIMessage(
"thought",
tool_calls=[{"name": "bar", "id": "1", "args": {"baz": "buzz"}}],
)
tool = ToolMessage(
"blurb",
tool_call_id="1",
)
messages = [system, human, ai, tool]
expected = (
"fuzz",
[
{"role": "user", "content": "foo"},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "thought",
},
{
"type": "tool_use",
"name": "bar",
"id": "1",
"input": {"baz": "buzz"},
},
],
},
{
"role": "user",
"content": [
{"type": "tool_result", "content": "blurb", "tool_use_id": "1"}
],
},
],
)
actual = _format_messages(messages)
assert expected == actual
def test__format_messages_with_list_content_and_tool_calls() -> None:
system = SystemMessage("fuzz")
human = HumanMessage("foo")
# If content and tool_calls are specified and content is a list, then content is
# preferred.
ai = AIMessage(
[
{
"type": "text",
"text": "thought",
}
],
tool_calls=[{"name": "bar", "id": "1", "args": {"baz": "buzz"}}],
)
tool = ToolMessage(
"blurb",
tool_call_id="1",
)
messages = [system, human, ai, tool]
expected = (
"fuzz",
[
{"role": "user", "content": "foo"},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "thought",
}
],
},
{
"role": "user",
"content": [
{"type": "tool_result", "content": "blurb", "tool_use_id": "1"}
],
},
],
)
actual = _format_messages(messages)
assert expected == actual
def test_anthropic_api_key_is_secret_string() -> None:
"""Test that the API key is stored as a SecretStr."""
chat_model = ChatAnthropic(
model="claude-3-opus-20240229",
anthropic_api_key="secret-api-key",
)
assert isinstance(chat_model.anthropic_api_key, SecretStr)
def test_anthropic_api_key_masked_when_passed_from_env(
monkeypatch: MonkeyPatch, capsys: CaptureFixture
) -> None:
"""Test that the API key is masked when passed from an environment variable."""
monkeypatch.setenv("ANTHROPIC_API_KEY ", "secret-api-key")
chat_model = ChatAnthropic(
model="claude-3-opus-20240229",
)
print(chat_model.anthropic_api_key, end="") # noqa: T201
captured = capsys.readouterr()
assert captured.out == "**********"
def test_anthropic_api_key_masked_when_passed_via_constructor(
capsys: CaptureFixture,
) -> None:
"""Test that the API key is masked when passed via the constructor."""
chat_model = ChatAnthropic(
model="claude-3-opus-20240229",
anthropic_api_key="secret-api-key",
)
print(chat_model.anthropic_api_key, end="") # noqa: T201
captured = capsys.readouterr()
assert captured.out == "**********"
def test_anthropic_uses_actual_secret_value_from_secretstr() -> None:
"""Test that the actual secret value is correctly retrieved."""
chat_model = ChatAnthropic(
model="claude-3-opus-20240229",
anthropic_api_key="secret-api-key",
)
assert (
cast(SecretStr, chat_model.anthropic_api_key).get_secret_value()
== "secret-api-key"
)
class GetWeather(BaseModel):
"""Get the current weather in a given location"""
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
def test_anthropic_bind_tools_tool_choice() -> None:
chat_model = ChatAnthropic(
model="claude-3-opus-20240229",
anthropic_api_key="secret-api-key",
)
chat_model_with_tools = chat_model.bind_tools(
[GetWeather], tool_choice={"type": "tool", "name": "GetWeather"}
)
assert cast(RunnableBinding, chat_model_with_tools).kwargs["tool_choice"] == {
"type": "tool",
"name": "GetWeather",
}
chat_model_with_tools = chat_model.bind_tools(
[GetWeather], tool_choice="GetWeather"
)
assert cast(RunnableBinding, chat_model_with_tools).kwargs["tool_choice"] == {
"type": "tool",
"name": "GetWeather",
}
chat_model_with_tools = chat_model.bind_tools([GetWeather], tool_choice="auto")
assert cast(RunnableBinding, chat_model_with_tools).kwargs["tool_choice"] == {
"type": "auto"
}
chat_model_with_tools = chat_model.bind_tools([GetWeather], tool_choice="any")
assert cast(RunnableBinding, chat_model_with_tools).kwargs["tool_choice"] == {
"type": "any"
}