langchain/libs/partners/anthropic/langchain_anthropic/chat_models.py
Jacob Lee 181a61982f
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.

One thing - Anthropic events look like this:

```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```

Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.

We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?

If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?

CC @ccurme @efriis @baskaryan
2024-06-14 09:14:43 -07:00

1147 lines
44 KiB
Python

import os
import re
import warnings
from operator import itemgetter
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Literal,
Mapping,
Optional,
Sequence,
Tuple,
Type,
TypedDict,
Union,
cast,
)
import anthropic
from langchain_core._api import deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
LangSmithParams,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
HumanMessage,
SystemMessage,
ToolCall,
ToolMessage,
)
from langchain_core.messages.ai import UsageMetadata
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.runnables import (
Runnable,
RunnableMap,
RunnablePassthrough,
)
from langchain_core.tools import BaseTool
from langchain_core.utils import (
build_extra_kwargs,
convert_to_secret_str,
get_pydantic_field_names,
)
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_anthropic.output_parsers import ToolsOutputParser, extract_tool_calls
_message_type_lookups = {
"human": "user",
"ai": "assistant",
"AIMessageChunk": "assistant",
"HumanMessageChunk": "user",
}
def _format_image(image_url: str) -> Dict:
"""
Formats an image of format data:image/jpeg;base64,{b64_string}
to a dict for anthropic api
{
"type": "base64",
"media_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",
}
And throws an error if it's not a b64 image
"""
regex = r"^data:(?P<media_type>image/.+);base64,(?P<data>.+)$"
match = re.match(regex, image_url)
if match is None:
raise ValueError(
"Anthropic only supports base64-encoded images currently."
" Example: data:image/png;base64,'/9j/4AAQSk'..."
)
return {
"type": "base64",
"media_type": match.group("media_type"),
"data": match.group("data"),
}
def _merge_messages(
messages: Sequence[BaseMessage],
) -> List[Union[SystemMessage, AIMessage, HumanMessage]]:
"""Merge runs of human/tool messages into single human messages with content blocks.""" # noqa: E501
merged: list = []
for curr in messages:
curr = curr.copy(deep=True)
if isinstance(curr, ToolMessage):
if isinstance(curr.content, list) and all(
isinstance(block, dict) and block.get("type") == "tool_result"
for block in curr.content
):
curr = HumanMessage(curr.content) # type: ignore[misc]
else:
curr = HumanMessage( # type: ignore[misc]
[
{
"type": "tool_result",
"content": curr.content,
"tool_use_id": curr.tool_call_id,
}
]
)
last = merged[-1] if merged else None
if isinstance(last, HumanMessage) and isinstance(curr, HumanMessage):
if isinstance(last.content, str):
new_content: List = [{"type": "text", "text": last.content}]
else:
new_content = last.content
if isinstance(curr.content, str):
new_content.append({"type": "text", "text": curr.content})
else:
new_content.extend(curr.content)
last.content = new_content
else:
merged.append(curr)
return merged
def _format_messages(messages: List[BaseMessage]) -> Tuple[Optional[str], List[Dict]]:
"""Format messages for anthropic."""
"""
[
{
"role": _message_type_lookups[m.type],
"content": [_AnthropicMessageContent(text=m.content).model_dump()],
}
for m in messages
]
"""
system: Optional[str] = None
formatted_messages: List[Dict] = []
merged_messages = _merge_messages(messages)
for i, message in enumerate(merged_messages):
if message.type == "system":
if i != 0:
raise ValueError("System message must be at beginning of message list.")
if not isinstance(message.content, str):
raise ValueError(
"System message must be a string, "
f"instead was: {type(message.content)}"
)
system = message.content
continue
role = _message_type_lookups[message.type]
content: Union[str, List]
if not isinstance(message.content, str):
# parse as dict
assert isinstance(
message.content, list
), "Anthropic message content must be str or list of dicts"
# populate content
content = []
for item in message.content:
if isinstance(item, str):
content.append({"type": "text", "text": item})
elif isinstance(item, dict):
if "type" not in item:
raise ValueError("Dict content item must have a type key")
elif item["type"] == "image_url":
# convert format
source = _format_image(item["image_url"]["url"])
content.append({"type": "image", "source": source})
elif item["type"] == "tool_use":
# If a tool_call with the same id as a tool_use content block
# exists, the tool_call is preferred.
if isinstance(message, AIMessage) and item["id"] in [
tc["id"] for tc in message.tool_calls
]:
overlapping = [
tc
for tc in message.tool_calls
if tc["id"] == item["id"]
]
content.extend(
_lc_tool_calls_to_anthropic_tool_use_blocks(overlapping)
)
else:
item.pop("text", None)
content.append(item)
elif item["type"] == "text":
text = item.get("text", "")
# Only add non-empty strings for now as empty ones are not
# accepted.
# https://github.com/anthropics/anthropic-sdk-python/issues/461
if text.strip():
content.append({"type": "text", "text": text})
else:
content.append(item)
else:
raise ValueError(
f"Content items must be str or dict, instead was: {type(item)}"
)
elif isinstance(message, AIMessage) and message.tool_calls:
content = (
[]
if not message.content
else [{"type": "text", "text": message.content}]
)
# Note: Anthropic can't have invalid tool calls as presently defined,
# since the model already returns dicts args not JSON strings, and invalid
# tool calls are those with invalid JSON for args.
content += _lc_tool_calls_to_anthropic_tool_use_blocks(message.tool_calls)
else:
content = message.content
formatted_messages.append({"role": role, "content": content})
return system, formatted_messages
class ChatAnthropic(BaseChatModel):
"""Anthropic chat model integration.
See https://docs.anthropic.com/en/docs/models-overview for a list of the latest models.
Setup:
Install ``langchain-anthropic`` and set environment variable ``ANTHROPIC_API_KEY``.
.. code-block:: bash
pip install -U langchain-anthropic
export ANTHROPIC_API_KEY="your-api-key"
Key init args — completion params:
model: str
Name of Anthropic model to use. E.g. "claude-3-sonnet-20240229".
temperature: float
Sampling temperature. Ranges from 0.0 to 1.0.
max_tokens: Optional[int]
Max number of tokens to generate.
Key init args — client params:
timeout: Optional[float]
Timeout for requests.
max_retries: int
Max number of retries if a request fails.
api_key: Optional[str]
Anthropic API key. If not passed in will be read from env var ANTHROPIC_API_KEY.
base_url: Optional[str]
Base URL for API requests. Only specify if using a proxy or service
emulator.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(
model="claude-3-sonnet-20240229",
temperature=0,
max_tokens=1024,
timeout=None,
max_retries=2,
# api_key="...",
# base_url="...",
# other params...
)
**NOTE**: Any param which is not explicitly supported will be passed directly to the
``anthropic.Anthropic.messages.create(...)`` API every time to the model is
invoked. For example:
.. code-block:: python
from langchain_anthropic import ChatAnthropic
import anthropic
ChatAnthropic(..., extra_headers={}).invoke(...)
# results in underlying API call of:
anthropic.Anthropic(..).messages.create(..., extra_headers={})
# which is also equivalent to:
ChatAnthropic(...).invoke(..., extra_headers={})
Invoke:
.. code-block:: python
messages = [
("system", "You are a helpful translator. Translate the user sentence to French."),
("human", "I love programming."),
]
llm.invoke(messages)
.. code-block:: python
AIMessage(content="J'aime la programmation.", response_metadata={'id': 'msg_01Trik66aiQ9Z1higrD5XFx3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 25, 'output_tokens': 11}}, id='run-5886ac5f-3c2e-49f5-8a44-b1e92808c929-0', usage_metadata={'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36})
Stream:
.. code-block:: python
for chunk in llm.stream(messages):
print(chunk)
.. code-block:: python
AIMessageChunk(content='J', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
AIMessageChunk(content="'", id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
AIMessageChunk(content='a', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
AIMessageChunk(content='ime', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
AIMessageChunk(content=' la', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
AIMessageChunk(content=' programm', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
AIMessageChunk(content='ation', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
AIMessageChunk(content='.', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
.. code-block:: python
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
.. code-block:: python
AIMessageChunk(content="J'aime la programmation.", id='run-b34faef0-882f-4869-a19c-ed2b856e6361')
Async:
.. code-block:: python
await llm.ainvoke(messages)
# stream:
# async for chunk in (await llm.astream(messages))
# batch:
# await llm.abatch([messages])
.. code-block:: python
AIMessage(content="J'aime la programmation.", response_metadata={'id': 'msg_01Trik66aiQ9Z1higrD5XFx3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 25, 'output_tokens': 11}}, id='run-5886ac5f-3c2e-49f5-8a44-b1e92808c929-0', usage_metadata={'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36})
Tool calling:
.. code-block:: python
from langchain_core.pydantic_v1 import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
ai_msg.tool_calls
.. code-block:: python
[{'name': 'GetWeather',
'args': {'location': 'Los Angeles, CA'},
'id': 'toolu_01KzpPEAgzura7hpBqwHbWdo'},
{'name': 'GetWeather',
'args': {'location': 'New York, NY'},
'id': 'toolu_01JtgbVGVJbiSwtZk3Uycezx'},
{'name': 'GetPopulation',
'args': {'location': 'Los Angeles, CA'},
'id': 'toolu_01429aygngesudV9nTbCKGuw'},
{'name': 'GetPopulation',
'args': {'location': 'New York, NY'},
'id': 'toolu_01JPktyd44tVMeBcPPnFSEJG'}]
See ``ChatAnthropic.bind_tools()`` method for more.
Structured output:
.. code-block:: python
from typing import Optional
from langchain_core.pydantic_v1 import BaseModel, Field
class Joke(BaseModel):
'''Joke to tell user.'''
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
.. code-block:: python
Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)
See ``ChatAnthropic.with_structured_output()`` for more.
Image input:
.. code-block:: python
import base64
import httpx
from langchain_core.messages import HumanMessage
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
ai_msg = llm.invoke([message])
ai_msg.content
.. code-block:: python
"The image depicts a sunny day with a partly cloudy sky. The sky is a brilliant blue color with scattered white clouds drifting across. The lighting and cloud patterns suggest pleasant, mild weather conditions. The scene shows a grassy field or meadow with a wooden boardwalk trail leading through it, indicating an outdoor setting on a nice day well-suited for enjoying nature."
Token usage:
.. code-block:: python
ai_msg = llm.invoke(messages)
ai_msg.usage_metadata
.. code-block:: python
{'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36}
Message chunks containing token usage will be included during streaming by
default:
.. code-block:: python
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full.usage_metadata
.. code-block:: python
{'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36}
These can be disabled by setting ``stream_usage=False`` in the stream method,
or by setting ``stream_usage=False`` when initializing ChatAnthropic.
Response metadata
.. code-block:: python
ai_msg = llm.invoke(messages)
ai_msg.response_metadata
.. code-block:: python
{'id': 'msg_013xU6FHEGEq76aP4RgFerVT',
'model': 'claude-3-sonnet-20240229',
'stop_reason': 'end_turn',
'stop_sequence': None,
'usage': {'input_tokens': 25, 'output_tokens': 11}}
""" # noqa: E501
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
_client: anthropic.Client = Field(default=None)
_async_client: anthropic.AsyncClient = Field(default=None)
model: str = Field(alias="model_name")
"""Model name to use."""
max_tokens: int = Field(default=1024, alias="max_tokens_to_sample")
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = None
"""A non-negative float that tunes the degree of randomness in generation."""
top_k: Optional[int] = None
"""Number of most likely tokens to consider at each step."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
default_request_timeout: Optional[float] = Field(None, alias="timeout")
"""Timeout for requests to Anthropic Completion API."""
# sdk default = 2: https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#retries
max_retries: int = 2
"""Number of retries allowed for requests sent to the Anthropic Completion API."""
stop_sequences: Optional[List[str]] = Field(None, alias="stop")
"""Default stop sequences."""
anthropic_api_url: Optional[str] = Field(None, alias="base_url")
"""Base URL for API requests. Only specify if using a proxy or service emulator.
If a value isn't passed in and environment variable ANTHROPIC_BASE_URL is set, value
will be read from there.
"""
anthropic_api_key: Optional[SecretStr] = Field(None, alias="api_key")
"""Automatically read from env var `ANTHROPIC_API_KEY` if not provided."""
default_headers: Optional[Mapping[str, str]] = None
"""Headers to pass to the Anthropic clients, will be used for every API call."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
streaming: bool = False
"""Whether to use streaming or not."""
stream_usage: bool = True
"""Whether to include usage metadata in streaming output. If True, additional
message chunks will be generated during the stream including usage metadata.
"""
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "anthropic-chat"
@property
def lc_secrets(self) -> Dict[str, str]:
return {"anthropic_api_key": "ANTHROPIC_API_KEY"}
@classmethod
def is_lc_serializable(cls) -> bool:
return True
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "chat_models", "anthropic"]
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"top_k": self.top_k,
"top_p": self.top_p,
"model_kwargs": self.model_kwargs,
"streaming": self.streaming,
"max_retries": self.max_retries,
"default_request_timeout": self.default_request_timeout,
}
def _get_ls_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> LangSmithParams:
"""Get the parameters used to invoke the model."""
params = self._get_invocation_params(stop=stop, **kwargs)
ls_params = LangSmithParams(
ls_provider="anthropic",
ls_model_name=self.model,
ls_model_type="chat",
ls_temperature=params.get("temperature", self.temperature),
)
if ls_max_tokens := params.get("max_tokens", self.max_tokens):
ls_params["ls_max_tokens"] = ls_max_tokens
if ls_stop := stop or params.get("stop", None):
ls_params["ls_stop"] = ls_stop
return ls_params
@root_validator(pre=True)
def build_extra(cls, values: Dict) -> Dict:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
anthropic_api_key = convert_to_secret_str(
values.get("anthropic_api_key") or os.environ.get("ANTHROPIC_API_KEY") or ""
)
values["anthropic_api_key"] = anthropic_api_key
api_key = anthropic_api_key.get_secret_value()
api_url = (
values.get("anthropic_api_url")
or os.environ.get("ANTHROPIC_API_URL")
or os.environ.get("ANTHROPIC_BASE_URL")
or "https://api.anthropic.com"
)
values["anthropic_api_url"] = api_url
client_params = {
"api_key": api_key,
"base_url": api_url,
"max_retries": values["max_retries"],
"default_headers": values.get("default_headers"),
}
# value <= 0 indicates the param should be ignored. None is a meaningful value
# for Anthropic client and treated differently than not specifying the param at
# all.
if (
values["default_request_timeout"] is None
or values["default_request_timeout"] > 0
):
client_params["timeout"] = values["default_request_timeout"]
values["_client"] = anthropic.Client(**client_params)
values["_async_client"] = anthropic.AsyncClient(**client_params)
return values
def _format_params(
self,
*,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
**kwargs: Dict,
) -> Dict:
# get system prompt if any
system, formatted_messages = _format_messages(messages)
stop_sequences = stop or self.stop_sequences
rtn = {
"model": self.model,
"max_tokens": self.max_tokens,
"messages": formatted_messages,
"temperature": self.temperature,
"top_k": self.top_k,
"top_p": self.top_p,
"stop_sequences": stop_sequences,
"system": system,
**self.model_kwargs,
**kwargs,
}
rtn = {k: v for k, v in rtn.items() if v is not None}
return rtn
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
*,
stream_usage: Optional[bool] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
if stream_usage is None:
stream_usage = self.stream_usage
params = self._format_params(messages=messages, stop=stop, **kwargs)
stream = self._client.messages.create(**params, stream=True)
coerce_content_to_string = not _tools_in_params(params)
for event in stream:
msg = _make_message_chunk_from_anthropic_event(
event,
stream_usage=stream_usage,
coerce_content_to_string=coerce_content_to_string,
)
if msg is not None:
chunk = ChatGenerationChunk(message=msg)
if run_manager and isinstance(msg.content, str):
run_manager.on_llm_new_token(msg.content, chunk=chunk)
yield chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
*,
stream_usage: Optional[bool] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
if stream_usage is None:
stream_usage = self.stream_usage
params = self._format_params(messages=messages, stop=stop, **kwargs)
stream = await self._async_client.messages.create(**params, stream=True)
coerce_content_to_string = not _tools_in_params(params)
async for event in stream:
msg = _make_message_chunk_from_anthropic_event(
event,
stream_usage=stream_usage,
coerce_content_to_string=coerce_content_to_string,
)
if msg is not None:
chunk = ChatGenerationChunk(message=msg)
if run_manager and isinstance(msg.content, str):
await run_manager.on_llm_new_token(msg.content, chunk=chunk)
yield chunk
def _format_output(self, data: Any, **kwargs: Any) -> ChatResult:
data_dict = data.model_dump()
content = data_dict["content"]
llm_output = {
k: v for k, v in data_dict.items() if k not in ("content", "role", "type")
}
if len(content) == 1 and content[0]["type"] == "text":
msg = AIMessage(content=content[0]["text"])
elif any(block["type"] == "tool_use" for block in content):
tool_calls = extract_tool_calls(content)
msg = AIMessage(
content=content,
tool_calls=tool_calls,
)
else:
msg = AIMessage(content=content)
# Collect token usage
msg.usage_metadata = {
"input_tokens": data.usage.input_tokens,
"output_tokens": data.usage.output_tokens,
"total_tokens": data.usage.input_tokens + data.usage.output_tokens,
}
return ChatResult(
generations=[ChatGeneration(message=msg)],
llm_output=llm_output,
)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
params = self._format_params(messages=messages, stop=stop, **kwargs)
if self.streaming:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
data = self._client.messages.create(**params)
return self._format_output(data, **kwargs)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
params = self._format_params(messages=messages, stop=stop, **kwargs)
if self.streaming:
stream_iter = self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
data = await self._async_client.messages.create(**params)
return self._format_output(data, **kwargs)
def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
*,
tool_choice: Optional[
Union[Dict[str, str], Literal["any", "auto"], str]
] = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
"""Bind tool-like objects to this chat model.
Args:
tools: A list of tool definitions to bind to this chat model.
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
models, callables, and BaseTools will be automatically converted to
their schema dictionary representation.
tool_choice: Which tool to require the model to call.
Options are:
name of the tool (str): calls corresponding tool;
"auto" or None: automatically selects a tool (including no tool);
"any": force at least one tool to be called;
or a dict of the form:
{"type": "tool", "name": "tool_name"},
or {"type: "any"},
or {"type: "auto"};
**kwargs: Any additional parameters to bind.
Example:
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPrice(BaseModel):
'''Get the price of a specific product.'''
product: str = Field(..., description="The product to look up.")
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
llm_with_tools = llm.bind_tools([GetWeather, GetPrice])
llm_with_tools.invoke("what is the weather like in San Francisco",)
# -> AIMessage(
# content=[
# {'text': '<thinking>\nBased on the user\'s question, the relevant function to call is GetWeather, which requires the "location" parameter.\n\nThe user has directly specified the location as "San Francisco". Since San Francisco is a well known city, I can reasonably infer they mean San Francisco, CA without needing the state specified.\n\nAll the required parameters are provided, so I can proceed with the API call.\n</thinking>', 'type': 'text'},
# {'text': None, 'type': 'tool_use', 'id': 'toolu_01SCgExKzQ7eqSkMHfygvYuu', 'name': 'GetWeather', 'input': {'location': 'San Francisco, CA'}}
# ],
# response_metadata={'id': 'msg_01GM3zQtoFv8jGQMW7abLnhi', 'model': 'claude-3-opus-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 487, 'output_tokens': 145}},
# id='run-87b1331e-9251-4a68-acef-f0a018b639cc-0'
# )
Example — force tool call with tool_choice 'any':
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPrice(BaseModel):
'''Get the price of a specific product.'''
product: str = Field(..., description="The product to look up.")
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
llm_with_tools = llm.bind_tools([GetWeather, GetPrice], tool_choice="any")
llm_with_tools.invoke("what is the weather like in San Francisco",)
Example — force specific tool call with tool_choice '<name_of_tool>':
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPrice(BaseModel):
'''Get the price of a specific product.'''
product: str = Field(..., description="The product to look up.")
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
llm_with_tools = llm.bind_tools([GetWeather, GetPrice], tool_choice="GetWeather")
llm_with_tools.invoke("what is the weather like in San Francisco",)
""" # noqa: E501
formatted_tools = [convert_to_anthropic_tool(tool) for tool in tools]
if not tool_choice:
pass
elif isinstance(tool_choice, dict):
kwargs["tool_choice"] = tool_choice
elif isinstance(tool_choice, str) and tool_choice in ("any", "auto"):
kwargs["tool_choice"] = {"type": tool_choice}
elif isinstance(tool_choice, str):
kwargs["tool_choice"] = {"type": "tool", "name": tool_choice}
else:
raise ValueError(
f"Unrecognized 'tool_choice' type {tool_choice=}. Expected dict, "
f"str, or None."
)
return self.bind(tools=formatted_tools, **kwargs)
def with_structured_output(
self,
schema: Union[Dict, Type[BaseModel]],
*,
include_raw: bool = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
then the model output will be an object of that class. If a dict then
the model output will be a dict. With a Pydantic class the returned
attributes will be validated, whereas with a dict they will not be.
include_raw: If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys "raw", "parsed", and "parsing_error".
Returns:
A Runnable that takes any ChatModel input. The output type depends on
include_raw and schema.
If include_raw is True then output is a dict with keys:
raw: BaseMessage,
parsed: Optional[_DictOrPydantic],
parsing_error: Optional[BaseException],
If include_raw is False and schema is a Dict then the runnable outputs a Dict.
If include_raw is False and schema is a Type[BaseModel] then the runnable
outputs a BaseModel.
Example: Pydantic schema (include_raw=False):
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
Example: Pydantic schema (include_raw=True):
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
Example: Dict schema (include_raw=False):
.. code-block:: python
from langchain_anthropic import ChatAnthropic
schema = {
"name": "AnswerWithJustification",
"description": "An answer to the user question along with justification for the answer.",
"input_schema": {
"type": "object",
"properties": {
"answer": {"type": "string"},
"justification": {"type": "string"},
},
"required": ["answer", "justification"]
}
}
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
structured_llm = llm.with_structured_output(schema)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
""" # noqa: E501
llm = self.bind_tools([schema], tool_choice="any")
if isinstance(schema, type) and issubclass(schema, BaseModel):
output_parser = ToolsOutputParser(
first_tool_only=True, pydantic_schemas=[schema]
)
else:
output_parser = ToolsOutputParser(first_tool_only=True, args_only=True)
if include_raw:
parser_assign = RunnablePassthrough.assign(
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
)
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
parser_with_fallback = parser_assign.with_fallbacks(
[parser_none], exception_key="parsing_error"
)
return RunnableMap(raw=llm) | parser_with_fallback
else:
return llm | output_parser
class AnthropicTool(TypedDict):
name: str
description: str
input_schema: Dict[str, Any]
def convert_to_anthropic_tool(
tool: Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool],
) -> AnthropicTool:
# already in Anthropic tool format
if isinstance(tool, dict) and all(
k in tool for k in ("name", "description", "input_schema")
):
return AnthropicTool(tool) # type: ignore
else:
formatted = convert_to_openai_tool(tool)["function"]
return AnthropicTool(
name=formatted["name"],
description=formatted["description"],
input_schema=formatted["parameters"],
)
def _tools_in_params(params: dict) -> bool:
return "tools" in params or (
"extra_body" in params and params["extra_body"].get("tools")
)
class _AnthropicToolUse(TypedDict):
type: Literal["tool_use"]
name: str
input: dict
id: str
def _lc_tool_calls_to_anthropic_tool_use_blocks(
tool_calls: List[ToolCall],
) -> List[_AnthropicToolUse]:
blocks = []
for tool_call in tool_calls:
blocks.append(
_AnthropicToolUse(
type="tool_use",
name=tool_call["name"],
input=tool_call["args"],
id=cast(str, tool_call["id"]),
)
)
return blocks
def _make_message_chunk_from_anthropic_event(
event: anthropic.types.RawMessageStreamEvent,
*,
stream_usage: bool = True,
coerce_content_to_string: bool,
) -> Optional[AIMessageChunk]:
"""Convert Anthropic event to AIMessageChunk.
Note that not all events will result in a message chunk. In these cases
we return None.
"""
message_chunk: Optional[AIMessageChunk] = None
# See https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/lib/streaming/_messages.py # noqa: E501
if event.type == "message_start" and stream_usage:
input_tokens = event.message.usage.input_tokens
message_chunk = AIMessageChunk(
content="" if coerce_content_to_string else [],
usage_metadata=UsageMetadata(
input_tokens=input_tokens,
output_tokens=0,
total_tokens=input_tokens,
),
)
elif (
event.type == "content_block_start"
and event.content_block is not None
and event.content_block.type == "tool_use"
):
if coerce_content_to_string:
warnings.warn("Received unexpected tool content block.")
content_block = event.content_block.model_dump()
content_block["index"] = event.index
tool_call_chunk = {
"index": event.index,
"id": event.content_block.id,
"name": event.content_block.name,
"args": "",
}
message_chunk = AIMessageChunk(
content=[content_block],
tool_call_chunks=[tool_call_chunk], # type: ignore
)
elif event.type == "content_block_delta":
if event.delta.type == "text_delta":
if coerce_content_to_string:
text = event.delta.text
message_chunk = AIMessageChunk(content=text)
else:
content_block = event.delta.model_dump()
content_block["index"] = event.index
content_block["type"] = "text"
message_chunk = AIMessageChunk(content=[content_block])
elif event.delta.type == "input_json_delta":
content_block = event.delta.model_dump()
content_block["index"] = event.index
content_block["type"] = "tool_use"
tool_call_chunk = {
"index": event.index,
"id": None,
"name": None,
"args": event.delta.partial_json,
}
message_chunk = AIMessageChunk(
content=[content_block],
tool_call_chunks=[tool_call_chunk], # type: ignore
)
elif event.type == "message_delta" and stream_usage:
output_tokens = event.usage.output_tokens
message_chunk = AIMessageChunk(
content="",
usage_metadata=UsageMetadata(
input_tokens=0,
output_tokens=output_tokens,
total_tokens=output_tokens,
),
)
else:
pass
return message_chunk
@deprecated(since="0.1.0", removal="0.3.0", alternative="ChatAnthropic")
class ChatAnthropicMessages(ChatAnthropic):
pass