mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
c010ec8b71
- `.get_relevant_documents(query)` -> `.invoke(query)` - `.get_relevant_documents(query=query)` -> `.invoke(query)` - `.get_relevant_documents(query, callbacks=callbacks)` -> `.invoke(query, config={"callbacks": callbacks})` - `.get_relevant_documents(query, **kwargs)` -> `.invoke(query, **kwargs)` --------- Co-authored-by: Erick Friis <erick@langchain.dev>
34 lines
1.1 KiB
Python
34 lines
1.1 KiB
Python
from typing import Any, Dict, List
|
|
|
|
from langchain.memory.chat_memory import BaseChatMemory
|
|
from langchain.memory.utils import get_prompt_input_key
|
|
from langchain_core.vectorstores import VectorStoreRetriever
|
|
|
|
from langchain_experimental.pydantic_v1 import Field
|
|
|
|
|
|
class AutoGPTMemory(BaseChatMemory):
|
|
"""Memory for AutoGPT."""
|
|
|
|
retriever: VectorStoreRetriever = Field(exclude=True)
|
|
"""VectorStoreRetriever object to connect to."""
|
|
|
|
@property
|
|
def memory_variables(self) -> List[str]:
|
|
return ["chat_history", "relevant_context"]
|
|
|
|
def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str:
|
|
"""Get the input key for the prompt."""
|
|
if self.input_key is None:
|
|
return get_prompt_input_key(inputs, self.memory_variables)
|
|
return self.input_key
|
|
|
|
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
|
input_key = self._get_prompt_input_key(inputs)
|
|
query = inputs[input_key]
|
|
docs = self.retriever.invoke(query)
|
|
return {
|
|
"chat_history": self.chat_memory.messages[-10:],
|
|
"relevant_context": docs,
|
|
}
|