mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
f92006de3c
0.2rc migrations - [x] Move memory - [x] Move remaining retrievers - [x] graph_qa chains - [x] some dependency from evaluation code potentially on math utils - [x] Move openapi chain from `langchain.chains.api.openapi` to `langchain_community.chains.openapi` - [x] Migrate `langchain.chains.ernie_functions` to `langchain_community.chains.ernie_functions` - [x] migrate `langchain/chains/llm_requests.py` to `langchain_community.chains.llm_requests` - [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder` -> `langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder` (namespace not ideal, but it needs to be moved to `langchain` to avoid circular deps) - [x] unit tests langchain -- add pytest.mark.community to some unit tests that will stay in langchain - [x] unit tests community -- move unit tests that depend on community to community - [x] mv integration tests that depend on community to community - [x] mypy checks Other todo - [x] Make deprecation warnings not noisy (need to use warn deprecated and check that things are implemented properly) - [x] Update deprecation messages with timeline for code removal (likely we actually won't be removing things until 0.4 release) -- will give people more time to transition their code. - [ ] Add information to deprecation warning to show users how to migrate their code base using langchain-cli - [ ] Remove any unnecessary requirements in langchain (e.g., is SQLALchemy required?) --------- Co-authored-by: Erick Friis <erick@langchain.dev>
320 lines
11 KiB
Python
320 lines
11 KiB
Python
"""Test Redis cache functionality."""
|
|
|
|
import uuid
|
|
from contextlib import asynccontextmanager, contextmanager
|
|
from typing import AsyncGenerator, Generator, List, Optional, cast
|
|
|
|
import pytest
|
|
from langchain.globals import get_llm_cache, set_llm_cache
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.load.dump import dumps
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
|
|
|
|
from langchain_community.cache import AsyncRedisCache, RedisCache, RedisSemanticCache
|
|
from tests.integration_tests.cache.fake_embeddings import (
|
|
ConsistentFakeEmbeddings,
|
|
FakeEmbeddings,
|
|
)
|
|
from tests.unit_tests.llms.fake_chat_model import FakeChatModel
|
|
from tests.unit_tests.llms.fake_llm import FakeLLM
|
|
|
|
# Using a non-standard port to avoid conflicts with potentially local running
|
|
# redis instances
|
|
# You can spin up a local redis using docker compose
|
|
# cd [repository-root]/docker
|
|
# docker-compose up redis
|
|
REDIS_TEST_URL = "redis://localhost:6020"
|
|
|
|
|
|
def random_string() -> str:
|
|
return str(uuid.uuid4())
|
|
|
|
|
|
@contextmanager
|
|
def get_sync_redis(*, ttl: Optional[int] = 1) -> Generator[RedisCache, None, None]:
|
|
"""Get a sync RedisCache instance."""
|
|
import redis
|
|
|
|
cache = RedisCache(redis_=redis.Redis.from_url(REDIS_TEST_URL), ttl=ttl)
|
|
try:
|
|
yield cache
|
|
finally:
|
|
cache.clear()
|
|
|
|
|
|
@asynccontextmanager
|
|
async def get_async_redis(
|
|
*, ttl: Optional[int] = 1
|
|
) -> AsyncGenerator[AsyncRedisCache, None]:
|
|
"""Get an async RedisCache instance."""
|
|
from redis.asyncio import Redis
|
|
|
|
cache = AsyncRedisCache(redis_=Redis.from_url(REDIS_TEST_URL), ttl=ttl)
|
|
try:
|
|
yield cache
|
|
finally:
|
|
await cache.aclear()
|
|
|
|
|
|
def test_redis_cache_ttl() -> None:
|
|
from redis import Redis
|
|
|
|
with get_sync_redis() as llm_cache:
|
|
set_llm_cache(llm_cache)
|
|
llm_cache.update("foo", "bar", [Generation(text="fizz")])
|
|
key = llm_cache._key("foo", "bar")
|
|
assert isinstance(llm_cache.redis, Redis)
|
|
assert llm_cache.redis.pttl(key) > 0
|
|
|
|
|
|
async def test_async_redis_cache_ttl() -> None:
|
|
from redis.asyncio import Redis as AsyncRedis
|
|
|
|
async with get_async_redis() as redis_cache:
|
|
set_llm_cache(redis_cache)
|
|
llm_cache = cast(RedisCache, get_llm_cache())
|
|
await llm_cache.aupdate("foo", "bar", [Generation(text="fizz")])
|
|
key = llm_cache._key("foo", "bar")
|
|
assert isinstance(llm_cache.redis, AsyncRedis)
|
|
assert await llm_cache.redis.pttl(key) > 0
|
|
|
|
|
|
def test_sync_redis_cache() -> None:
|
|
with get_sync_redis() as llm_cache:
|
|
set_llm_cache(llm_cache)
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
llm_cache.update("prompt", llm_string, [Generation(text="fizz0")])
|
|
output = llm.generate(["prompt"])
|
|
expected_output = LLMResult(
|
|
generations=[[Generation(text="fizz0")]],
|
|
llm_output={},
|
|
)
|
|
assert output == expected_output
|
|
|
|
|
|
async def test_sync_in_async_redis_cache() -> None:
|
|
"""Test the sync RedisCache invoked with async methods"""
|
|
with get_sync_redis() as llm_cache:
|
|
set_llm_cache(llm_cache)
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
# llm_cache.update("meow", llm_string, [Generation(text="meow")])
|
|
await llm_cache.aupdate("prompt", llm_string, [Generation(text="fizz1")])
|
|
output = await llm.agenerate(["prompt"])
|
|
expected_output = LLMResult(
|
|
generations=[[Generation(text="fizz1")]],
|
|
llm_output={},
|
|
)
|
|
assert output == expected_output
|
|
|
|
|
|
async def test_async_redis_cache() -> None:
|
|
async with get_async_redis() as redis_cache:
|
|
set_llm_cache(redis_cache)
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
llm_cache = cast(RedisCache, get_llm_cache())
|
|
await llm_cache.aupdate("prompt", llm_string, [Generation(text="fizz2")])
|
|
output = await llm.agenerate(["prompt"])
|
|
expected_output = LLMResult(
|
|
generations=[[Generation(text="fizz2")]],
|
|
llm_output={},
|
|
)
|
|
assert output == expected_output
|
|
|
|
|
|
async def test_async_in_sync_redis_cache() -> None:
|
|
async with get_async_redis() as redis_cache:
|
|
set_llm_cache(redis_cache)
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
llm_cache = cast(RedisCache, get_llm_cache())
|
|
with pytest.raises(NotImplementedError):
|
|
llm_cache.update("foo", llm_string, [Generation(text="fizz")])
|
|
|
|
|
|
def test_redis_cache_chat() -> None:
|
|
with get_sync_redis() as redis_cache:
|
|
set_llm_cache(redis_cache)
|
|
llm = FakeChatModel()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
prompt: List[BaseMessage] = [HumanMessage(content="foo")]
|
|
llm_cache = cast(RedisCache, get_llm_cache())
|
|
llm_cache.update(
|
|
dumps(prompt),
|
|
llm_string,
|
|
[ChatGeneration(message=AIMessage(content="fizz"))],
|
|
)
|
|
output = llm.generate([prompt])
|
|
expected_output = LLMResult(
|
|
generations=[[ChatGeneration(message=AIMessage(content="fizz"))]],
|
|
llm_output={},
|
|
)
|
|
assert output == expected_output
|
|
|
|
|
|
async def test_async_redis_cache_chat() -> None:
|
|
async with get_async_redis() as redis_cache:
|
|
set_llm_cache(redis_cache)
|
|
llm = FakeChatModel()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
prompt: List[BaseMessage] = [HumanMessage(content="foo")]
|
|
llm_cache = cast(RedisCache, get_llm_cache())
|
|
await llm_cache.aupdate(
|
|
dumps(prompt),
|
|
llm_string,
|
|
[ChatGeneration(message=AIMessage(content="fizz"))],
|
|
)
|
|
output = await llm.agenerate([prompt])
|
|
expected_output = LLMResult(
|
|
generations=[[ChatGeneration(message=AIMessage(content="fizz"))]],
|
|
llm_output={},
|
|
)
|
|
assert output == expected_output
|
|
|
|
|
|
def test_redis_semantic_cache() -> None:
|
|
"""Test redis semantic cache functionality."""
|
|
set_llm_cache(
|
|
RedisSemanticCache(
|
|
embedding=FakeEmbeddings(), redis_url=REDIS_TEST_URL, score_threshold=0.1
|
|
)
|
|
)
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
llm_cache = cast(RedisSemanticCache, get_llm_cache())
|
|
llm_cache.update("foo", llm_string, [Generation(text="fizz")])
|
|
output = llm.generate(
|
|
["bar"]
|
|
) # foo and bar will have the same embedding produced by FakeEmbeddings
|
|
expected_output = LLMResult(
|
|
generations=[[Generation(text="fizz")]],
|
|
llm_output={},
|
|
)
|
|
assert output == expected_output
|
|
# clear the cache
|
|
llm_cache.clear(llm_string=llm_string)
|
|
output = llm.generate(
|
|
["bar"]
|
|
) # foo and bar will have the same embedding produced by FakeEmbeddings
|
|
# expect different output now without cached result
|
|
assert output != expected_output
|
|
llm_cache.clear(llm_string=llm_string)
|
|
|
|
|
|
def test_redis_semantic_cache_multi() -> None:
|
|
set_llm_cache(
|
|
RedisSemanticCache(
|
|
embedding=FakeEmbeddings(), redis_url=REDIS_TEST_URL, score_threshold=0.1
|
|
)
|
|
)
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
llm_cache = cast(RedisSemanticCache, get_llm_cache())
|
|
llm_cache.update(
|
|
"foo", llm_string, [Generation(text="fizz"), Generation(text="Buzz")]
|
|
)
|
|
output = llm.generate(
|
|
["bar"]
|
|
) # foo and bar will have the same embedding produced by FakeEmbeddings
|
|
expected_output = LLMResult(
|
|
generations=[[Generation(text="fizz"), Generation(text="Buzz")]],
|
|
llm_output={},
|
|
)
|
|
assert output == expected_output
|
|
# clear the cache
|
|
llm_cache.clear(llm_string=llm_string)
|
|
|
|
|
|
def test_redis_semantic_cache_chat() -> None:
|
|
set_llm_cache(
|
|
RedisSemanticCache(
|
|
embedding=FakeEmbeddings(), redis_url=REDIS_TEST_URL, score_threshold=0.1
|
|
)
|
|
)
|
|
llm = FakeChatModel()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
prompt: List[BaseMessage] = [HumanMessage(content="foo")]
|
|
llm_cache = cast(RedisSemanticCache, get_llm_cache())
|
|
llm_cache.update(
|
|
dumps(prompt), llm_string, [ChatGeneration(message=AIMessage(content="fizz"))]
|
|
)
|
|
output = llm.generate([prompt])
|
|
expected_output = LLMResult(
|
|
generations=[[ChatGeneration(message=AIMessage(content="fizz"))]],
|
|
llm_output={},
|
|
)
|
|
assert output == expected_output
|
|
llm_cache.clear(llm_string=llm_string)
|
|
|
|
|
|
@pytest.mark.parametrize("embedding", [ConsistentFakeEmbeddings()])
|
|
@pytest.mark.parametrize(
|
|
"prompts, generations",
|
|
[
|
|
# Single prompt, single generation
|
|
([random_string()], [[random_string()]]),
|
|
# Single prompt, multiple generations
|
|
([random_string()], [[random_string(), random_string()]]),
|
|
# Single prompt, multiple generations
|
|
([random_string()], [[random_string(), random_string(), random_string()]]),
|
|
# Multiple prompts, multiple generations
|
|
(
|
|
[random_string(), random_string()],
|
|
[[random_string()], [random_string(), random_string()]],
|
|
),
|
|
],
|
|
ids=[
|
|
"single_prompt_single_generation",
|
|
"single_prompt_multiple_generations",
|
|
"single_prompt_multiple_generations",
|
|
"multiple_prompts_multiple_generations",
|
|
],
|
|
)
|
|
def test_redis_semantic_cache_hit(
|
|
embedding: Embeddings, prompts: List[str], generations: List[List[str]]
|
|
) -> None:
|
|
set_llm_cache(RedisSemanticCache(embedding=embedding, redis_url=REDIS_TEST_URL))
|
|
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
|
|
llm_generations = [
|
|
[
|
|
Generation(text=generation, generation_info=params)
|
|
for generation in prompt_i_generations
|
|
]
|
|
for prompt_i_generations in generations
|
|
]
|
|
llm_cache = cast(RedisSemanticCache, get_llm_cache())
|
|
for prompt_i, llm_generations_i in zip(prompts, llm_generations):
|
|
print(prompt_i) # noqa: T201
|
|
print(llm_generations_i) # noqa: T201
|
|
llm_cache.update(prompt_i, llm_string, llm_generations_i)
|
|
llm.generate(prompts)
|
|
assert llm.generate(prompts) == LLMResult(
|
|
generations=llm_generations, llm_output={}
|
|
)
|