langchain/libs/community/langchain_community/tools/databricks/_execution.py
Xiangrui Meng f26ab93df8
community: support Databricks Unity Catalog functions as LangChain tools (#22555)
This PR adds support for using Databricks Unity Catalog functions as
LangChain tools, which runs inside a Databricks SQL warehouse.

* An example notebook is provided.
2024-06-06 09:38:50 -07:00

173 lines
6.2 KiB
Python

import json
from dataclasses import dataclass
from io import StringIO
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional
if TYPE_CHECKING:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.catalog import FunctionInfo
from databricks.sdk.service.sql import StatementParameterListItem
def is_scalar(function: "FunctionInfo") -> bool:
from databricks.sdk.service.catalog import ColumnTypeName
return function.data_type != ColumnTypeName.TABLE_TYPE
@dataclass
class ParameterizedStatement:
statement: str
parameters: List["StatementParameterListItem"]
@dataclass
class FunctionExecutionResult:
"""
Result of executing a function.
We always use a string to present the result value for AI model to consume.
"""
error: Optional[str] = None
format: Optional[Literal["SCALAR", "CSV"]] = None
value: Optional[str] = None
truncated: Optional[bool] = None
def to_json(self) -> str:
data = {k: v for (k, v) in self.__dict__.items() if v is not None}
return json.dumps(data)
def get_execute_function_sql_stmt(
function: "FunctionInfo", json_params: Dict[str, Any]
) -> ParameterizedStatement:
from databricks.sdk.service.catalog import ColumnTypeName
from databricks.sdk.service.sql import StatementParameterListItem
parts = []
output_params = []
if is_scalar(function):
# TODO: IDENTIFIER(:function) did not work
parts.append(f"SELECT {function.full_name}(")
else:
parts.append(f"SELECT * FROM {function.full_name}(")
if function.input_params is None or function.input_params.parameters is None:
assert (
not json_params
), "Function has no parameters but parameters were provided."
else:
args = []
use_named_args = False
for p in function.input_params.parameters:
if p.name not in json_params:
if p.parameter_default is not None:
use_named_args = True
else:
raise ValueError(
f"Parameter {p.name} is required but not provided."
)
else:
arg_clause = ""
if use_named_args:
arg_clause += f"{p.name} => "
json_value = json_params[p.name]
if p.type_name in (
ColumnTypeName.ARRAY,
ColumnTypeName.MAP,
ColumnTypeName.STRUCT,
):
# Use from_json to restore values of complex types.
json_value_str = json.dumps(json_value)
# TODO: parametrize type
arg_clause += f"from_json(:{p.name}, '{p.type_text}')"
output_params.append(
StatementParameterListItem(name=p.name, value=json_value_str)
)
elif p.type_name == ColumnTypeName.BINARY:
# Use ubbase64 to restore binary values.
arg_clause += f"unbase64(:{p.name})"
output_params.append(
StatementParameterListItem(name=p.name, value=json_value)
)
else:
arg_clause += f":{p.name}"
output_params.append(
StatementParameterListItem(
name=p.name, value=json_value, type=p.type_text
)
)
args.append(arg_clause)
parts.append(",".join(args))
parts.append(")")
# TODO: check extra params in kwargs
statement = "".join(parts)
return ParameterizedStatement(statement=statement, parameters=output_params)
def execute_function(
ws: "WorkspaceClient",
warehouse_id: str,
function: "FunctionInfo",
parameters: Dict[str, Any],
) -> FunctionExecutionResult:
"""
Execute a function with the given arguments and return the result.
"""
try:
import pandas as pd
except ImportError as e:
raise ImportError(
"Could not import pandas python package. "
"Please install it with `pip install pandas`."
) from e
from databricks.sdk.service.sql import StatementState
# TODO: async so we can run functions in parallel
parametrized_statement = get_execute_function_sql_stmt(function, parameters)
# TODO: configurable limits
response = ws.statement_execution.execute_statement(
statement=parametrized_statement.statement,
warehouse_id=warehouse_id,
parameters=parametrized_statement.parameters,
wait_timeout="30s",
row_limit=100,
byte_limit=4096,
)
status = response.status
assert status is not None, f"Statement execution failed: {response}"
if status.state != StatementState.SUCCEEDED:
error = status.error
assert (
error is not None
), "Statement execution failed but no error message was provided."
return FunctionExecutionResult(error=f"{error.error_code}: {error.message}")
manifest = response.manifest
assert manifest is not None
truncated = manifest.truncated
result = response.result
assert (
result is not None
), "Statement execution succeeded but no result was provided."
data_array = result.data_array
if is_scalar(function):
value = None
if data_array and len(data_array) > 0 and len(data_array[0]) > 0:
value = str(data_array[0][0]) # type: ignore
return FunctionExecutionResult(
format="SCALAR", value=value, truncated=truncated
)
else:
schema = manifest.schema
assert (
schema is not None and schema.columns is not None
), "Statement execution succeeded but no schema was provided."
columns = [c.name for c in schema.columns]
if data_array is None:
data_array = []
pdf = pd.DataFrame.from_records(data_array, columns=columns)
csv_buffer = StringIO()
pdf.to_csv(csv_buffer, index=False)
return FunctionExecutionResult(
format="CSV", value=csv_buffer.getvalue(), truncated=truncated
)