langchain/libs/community/langchain_community/callbacks/tracers/comet.py
sasha 1c9ceff503
community: add metadata to chain logging; (#22122)
Hey, I'm Sasha. The SDK engineer from [Comet](https://comet.com).
This PR updates the CometTracer class.
Added metadata to CometTracerr. From now on, both chains and spans will
send it.
2024-05-24 15:29:40 +00:00

136 lines
4.5 KiB
Python

from types import ModuleType, SimpleNamespace
from typing import TYPE_CHECKING, Any, Callable, Dict
from langchain_core.tracers import BaseTracer
from langchain_core.utils import guard_import
if TYPE_CHECKING:
from uuid import UUID
from comet_llm import Span
from comet_llm.chains.chain import Chain
from langchain_community.callbacks.tracers.schemas import Run
def _get_run_type(run: "Run") -> str:
if isinstance(run.run_type, str):
return run.run_type
elif hasattr(run.run_type, "value"):
return run.run_type.value
else:
return str(run.run_type)
def import_comet_llm_api() -> SimpleNamespace:
"""Import comet_llm api and raise an error if it is not installed."""
comet_llm = guard_import("comet_llm")
comet_llm_chains = guard_import("comet_llm.chains")
return SimpleNamespace(
chain=comet_llm_chains.chain,
span=comet_llm_chains.span,
chain_api=comet_llm_chains.api,
experiment_info=comet_llm.experiment_info,
flush=comet_llm.flush,
)
class CometTracer(BaseTracer):
"""Comet Tracer."""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the Comet Tracer."""
super().__init__(**kwargs)
self._span_map: Dict["UUID", "Span"] = {}
"""Map from run id to span."""
self._chains_map: Dict["UUID", "Chain"] = {}
"""Map from run id to chain."""
self._initialize_comet_modules()
def _initialize_comet_modules(self) -> None:
comet_llm_api = import_comet_llm_api()
self._chain: ModuleType = comet_llm_api.chain
self._span: ModuleType = comet_llm_api.span
self._chain_api: ModuleType = comet_llm_api.chain_api
self._experiment_info: ModuleType = comet_llm_api.experiment_info
self._flush: Callable[[], None] = comet_llm_api.flush
def _persist_run(self, run: "Run") -> None:
run_dict: Dict[str, Any] = run.dict()
chain_ = self._chains_map[run.id]
chain_.set_outputs(outputs=run_dict["outputs"])
self._chain_api.log_chain(chain_)
def _process_start_trace(self, run: "Run") -> None:
run_dict: Dict[str, Any] = run.dict()
if not run.parent_run_id:
# This is the first run, which maps to a chain
metadata = run_dict["extra"].get("metadata", None)
chain_: "Chain" = self._chain.Chain(
inputs=run_dict["inputs"],
metadata=metadata,
experiment_info=self._experiment_info.get(),
)
self._chains_map[run.id] = chain_
else:
span: "Span" = self._span.Span(
inputs=run_dict["inputs"],
category=_get_run_type(run),
metadata=run_dict["extra"],
name=run.name,
)
span.__api__start__(self._chains_map[run.parent_run_id])
self._chains_map[run.id] = self._chains_map[run.parent_run_id]
self._span_map[run.id] = span
def _process_end_trace(self, run: "Run") -> None:
run_dict: Dict[str, Any] = run.dict()
if not run.parent_run_id:
pass
# Langchain will call _persist_run for us
else:
span = self._span_map[run.id]
span.set_outputs(outputs=run_dict["outputs"])
span.__api__end__()
def flush(self) -> None:
self._flush()
def _on_llm_start(self, run: "Run") -> None:
"""Process the LLM Run upon start."""
self._process_start_trace(run)
def _on_llm_end(self, run: "Run") -> None:
"""Process the LLM Run."""
self._process_end_trace(run)
def _on_llm_error(self, run: "Run") -> None:
"""Process the LLM Run upon error."""
self._process_end_trace(run)
def _on_chain_start(self, run: "Run") -> None:
"""Process the Chain Run upon start."""
self._process_start_trace(run)
def _on_chain_end(self, run: "Run") -> None:
"""Process the Chain Run."""
self._process_end_trace(run)
def _on_chain_error(self, run: "Run") -> None:
"""Process the Chain Run upon error."""
self._process_end_trace(run)
def _on_tool_start(self, run: "Run") -> None:
"""Process the Tool Run upon start."""
self._process_start_trace(run)
def _on_tool_end(self, run: "Run") -> None:
"""Process the Tool Run."""
self._process_end_trace(run)
def _on_tool_error(self, run: "Run") -> None:
"""Process the Tool Run upon error."""
self._process_end_trace(run)