langchain/libs/partners/mistralai
ccurme c5bf114c0f
together, standard-tests: specify tool_choice in standard tests (#25548)
Here we allow standard tests to specify a value for `tool_choice` via a
`tool_choice_value` property, which defaults to None.

Chat models [available in
Together](https://docs.together.ai/docs/chat-models) have issues passing
standard tool calling tests:
- llama 3.1 models currently [appear to rely on user-side
parsing](https://docs.together.ai/docs/llama-3-function-calling) in
Together;
- Mixtral-8x7B and Mistral-7B (currently tested) consistently do not
call tools in some tests.

Specifying tool_choice also lets us remove an existing `xfail` and use a
smaller model in Groq tests.
2024-08-19 16:37:36 -04:00
..
langchain_mistralai mistralai[patch]: Update more @root_validators for pydantic 2 compatibility (#25446) 2024-08-15 12:44:42 -04:00
scripts patch[Partners] Unified fix of incorrect variable declarations in all check_imports (#25014) 2024-08-03 13:49:41 -04:00
tests together, standard-tests: specify tool_choice in standard tests (#25548) 2024-08-19 16:37:36 -04:00
.gitignore mistralai: Add langchain-mistralai partner package (#14783) 2023-12-19 10:34:19 -05:00
LICENSE mistralai: Add langchain-mistralai partner package (#14783) 2023-12-19 10:34:19 -05:00
Makefile infra: update mypy 1.10, ruff 0.5 (#23721) 2024-07-03 10:33:27 -07:00
poetry.lock integrations[patch]: release model packages (#24900) 2024-07-31 20:48:20 +00:00
pyproject.toml integrations[patch]: release model packages (#24900) 2024-07-31 20:48:20 +00:00
README.md mistralai[minor]: Add embeddings (#15282) 2024-01-16 17:48:37 -08:00

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])