mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
118 lines
3.7 KiB
Python
118 lines
3.7 KiB
Python
import os
|
|
from typing import Any, List
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
from langchain_community.document_loaders.unstructured import (
|
|
UnstructuredFileLoader,
|
|
satisfies_min_unstructured_version,
|
|
)
|
|
|
|
|
|
class UnstructuredEmailLoader(UnstructuredFileLoader):
|
|
"""Load email files using `Unstructured`.
|
|
|
|
Works with both
|
|
.eml and .msg files. You can process attachments in addition to the
|
|
e-mail message itself by passing process_attachments=True into the
|
|
constructor for the loader. By default, attachments will be processed
|
|
with the unstructured partition function. If you already know the document
|
|
types of the attachments, you can specify another partitioning function
|
|
with the attachment partitioner kwarg.
|
|
|
|
Example
|
|
-------
|
|
from langchain_community.document_loaders import UnstructuredEmailLoader
|
|
|
|
loader = UnstructuredEmailLoader("example_data/fake-email.eml", mode="elements")
|
|
loader.load()
|
|
|
|
Example
|
|
-------
|
|
from langchain_community.document_loaders import UnstructuredEmailLoader
|
|
|
|
loader = UnstructuredEmailLoader(
|
|
"example_data/fake-email-attachment.eml",
|
|
mode="elements",
|
|
process_attachments=True,
|
|
)
|
|
loader.load()
|
|
"""
|
|
|
|
def __init__(
|
|
self, file_path: str, mode: str = "single", **unstructured_kwargs: Any
|
|
):
|
|
process_attachments = unstructured_kwargs.get("process_attachments")
|
|
attachment_partitioner = unstructured_kwargs.get("attachment_partitioner")
|
|
|
|
if process_attachments and attachment_partitioner is None:
|
|
from unstructured.partition.auto import partition
|
|
|
|
unstructured_kwargs["attachment_partitioner"] = partition
|
|
|
|
super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs)
|
|
|
|
def _get_elements(self) -> List:
|
|
from unstructured.file_utils.filetype import FileType, detect_filetype
|
|
|
|
filetype = detect_filetype(self.file_path)
|
|
|
|
if filetype == FileType.EML:
|
|
from unstructured.partition.email import partition_email
|
|
|
|
return partition_email(filename=self.file_path, **self.unstructured_kwargs)
|
|
elif satisfies_min_unstructured_version("0.5.8") and filetype == FileType.MSG:
|
|
from unstructured.partition.msg import partition_msg
|
|
|
|
return partition_msg(filename=self.file_path, **self.unstructured_kwargs)
|
|
else:
|
|
raise ValueError(
|
|
f"Filetype {filetype} is not supported in UnstructuredEmailLoader."
|
|
)
|
|
|
|
|
|
class OutlookMessageLoader(BaseLoader):
|
|
"""
|
|
Loads Outlook Message files using extract_msg.
|
|
|
|
https://github.com/TeamMsgExtractor/msg-extractor
|
|
"""
|
|
|
|
def __init__(self, file_path: str):
|
|
"""Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: The path to the Outlook Message file.
|
|
"""
|
|
|
|
self.file_path = file_path
|
|
|
|
if not os.path.isfile(self.file_path):
|
|
raise ValueError("File path %s is not a valid file" % self.file_path)
|
|
|
|
try:
|
|
import extract_msg # noqa:F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"extract_msg is not installed. Please install it with "
|
|
"`pip install extract_msg`"
|
|
)
|
|
|
|
def load(self) -> List[Document]:
|
|
"""Load data into document objects."""
|
|
import extract_msg
|
|
|
|
msg = extract_msg.Message(self.file_path)
|
|
return [
|
|
Document(
|
|
page_content=msg.body,
|
|
metadata={
|
|
"source": self.file_path,
|
|
"subject": msg.subject,
|
|
"sender": msg.sender,
|
|
"date": msg.date,
|
|
},
|
|
)
|
|
]
|