mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
eb5e250188
- Any direct usage of ThreadPoolExecutor or asyncio.run_in_executor needs manual handling of context vars
205 lines
6.7 KiB
Python
205 lines
6.7 KiB
Python
import logging
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
from urllib.parse import urlparse
|
|
|
|
from langchain_core.callbacks import (
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import BaseChatModel
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
FunctionMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatResult
|
|
from langchain_core.pydantic_v1 import (
|
|
Field,
|
|
PrivateAttr,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ChatMlflow(BaseChatModel):
|
|
"""`MLflow` chat models API.
|
|
|
|
To use, you should have the `mlflow[genai]` python package installed.
|
|
For more information, see https://mlflow.org/docs/latest/llms/deployments/server.html.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatMlflow
|
|
|
|
chat = ChatMlflow(
|
|
target_uri="http://localhost:5000",
|
|
endpoint="chat",
|
|
temperature-0.1,
|
|
)
|
|
"""
|
|
|
|
endpoint: str
|
|
"""The endpoint to use."""
|
|
target_uri: str
|
|
"""The target URI to use."""
|
|
temperature: float = 0.0
|
|
"""The sampling temperature."""
|
|
n: int = 1
|
|
"""The number of completion choices to generate."""
|
|
stop: Optional[List[str]] = None
|
|
"""The stop sequence."""
|
|
max_tokens: Optional[int] = None
|
|
"""The maximum number of tokens to generate."""
|
|
extra_params: dict = Field(default_factory=dict)
|
|
"""Any extra parameters to pass to the endpoint."""
|
|
_client: Any = PrivateAttr()
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
super().__init__(**kwargs)
|
|
self._validate_uri()
|
|
try:
|
|
from mlflow.deployments import get_deploy_client
|
|
|
|
self._client = get_deploy_client(self.target_uri)
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Failed to create the client. "
|
|
f"Please run `pip install mlflow{self._mlflow_extras}` to install "
|
|
"required dependencies."
|
|
) from e
|
|
|
|
@property
|
|
def _mlflow_extras(self) -> str:
|
|
return "[genai]"
|
|
|
|
def _validate_uri(self) -> None:
|
|
if self.target_uri == "databricks":
|
|
return
|
|
allowed = ["http", "https", "databricks"]
|
|
if urlparse(self.target_uri).scheme not in allowed:
|
|
raise ValueError(
|
|
f"Invalid target URI: {self.target_uri}. "
|
|
f"The scheme must be one of {allowed}."
|
|
)
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
params: Dict[str, Any] = {
|
|
"target_uri": self.target_uri,
|
|
"endpoint": self.endpoint,
|
|
"temperature": self.temperature,
|
|
"n": self.n,
|
|
"stop": self.stop,
|
|
"max_tokens": self.max_tokens,
|
|
"extra_params": self.extra_params,
|
|
}
|
|
return params
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
message_dicts = [
|
|
ChatMlflow._convert_message_to_dict(message) for message in messages
|
|
]
|
|
data: Dict[str, Any] = {
|
|
"messages": message_dicts,
|
|
"temperature": self.temperature,
|
|
"n": self.n,
|
|
**self.extra_params,
|
|
**kwargs,
|
|
}
|
|
if stop := self.stop or stop:
|
|
data["stop"] = stop
|
|
if self.max_tokens is not None:
|
|
data["max_tokens"] = self.max_tokens
|
|
resp = self._client.predict(endpoint=self.endpoint, inputs=data)
|
|
return ChatMlflow._create_chat_result(resp)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
return self._default_params
|
|
|
|
def _get_invocation_params(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
"""Get the parameters used to invoke the model FOR THE CALLBACKS."""
|
|
return {
|
|
**self._default_params,
|
|
**super()._get_invocation_params(stop=stop, **kwargs),
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "mlflow-chat"
|
|
|
|
@staticmethod
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
role = _dict["role"]
|
|
content = _dict["content"]
|
|
if role == "user":
|
|
return HumanMessage(content=content)
|
|
elif role == "assistant":
|
|
return AIMessage(content=content)
|
|
elif role == "system":
|
|
return SystemMessage(content=content)
|
|
else:
|
|
return ChatMessage(content=content, role=role)
|
|
|
|
@staticmethod
|
|
def _raise_functions_not_supported() -> None:
|
|
raise ValueError(
|
|
"Function messages are not supported by Databricks. Please"
|
|
" create a feature request at https://github.com/mlflow/mlflow/issues."
|
|
)
|
|
|
|
@staticmethod
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, FunctionMessage):
|
|
raise ValueError(
|
|
"Function messages are not supported by Databricks. Please"
|
|
" create a feature request at https://github.com/mlflow/mlflow/issues."
|
|
)
|
|
else:
|
|
raise ValueError(f"Got unknown message type: {message}")
|
|
|
|
if "function_call" in message.additional_kwargs:
|
|
ChatMlflow._raise_functions_not_supported()
|
|
if message.additional_kwargs:
|
|
logger.warning(
|
|
"Additional message arguments are unsupported by Databricks"
|
|
" and will be ignored: %s",
|
|
message.additional_kwargs,
|
|
)
|
|
return message_dict
|
|
|
|
@staticmethod
|
|
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
|
|
generations = []
|
|
for choice in response["choices"]:
|
|
message = ChatMlflow._convert_dict_to_message(choice["message"])
|
|
usage = choice.get("usage", {})
|
|
gen = ChatGeneration(
|
|
message=message,
|
|
generation_info=usage,
|
|
)
|
|
generations.append(gen)
|
|
|
|
usage = response.get("usage", {})
|
|
return ChatResult(generations=generations, llm_output=usage)
|