langchain/libs/community/langchain_community/chat_models/hunyuan.py
Bagatur ed58eeb9c5
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00

322 lines
10 KiB
Python

import base64
import hashlib
import hmac
import json
import logging
import time
from typing import Any, Dict, Iterator, List, Mapping, Optional, Type
from urllib.parse import urlparse
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import (
convert_to_secret_str,
get_from_dict_or_env,
get_pydantic_field_names,
)
logger = logging.getLogger(__name__)
DEFAULT_API_BASE = "https://hunyuan.cloud.tencent.com"
DEFAULT_PATH = "/hyllm/v1/chat/completions"
def _convert_message_to_dict(message: BaseMessage) -> dict:
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
else:
raise TypeError(f"Got unknown type {message}")
return message_dict
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
return AIMessage(content=_dict.get("content", "") or "")
else:
return ChatMessage(content=_dict["content"], role=role)
def _convert_delta_to_message_chunk(
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
role = _dict.get("role")
content = _dict.get("content") or ""
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
elif role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(content=content)
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role)
else:
return default_class(content=content)
# signature generation
# https://cloud.tencent.com/document/product/1729/97732#532252ce-e960-48a7-8821-940a9ce2ccf3
def _signature(secret_key: SecretStr, url: str, payload: Dict[str, Any]) -> str:
sorted_keys = sorted(payload.keys())
url_info = urlparse(url)
sign_str = url_info.netloc + url_info.path + "?"
for key in sorted_keys:
value = payload[key]
if isinstance(value, list) or isinstance(value, dict):
value = json.dumps(value, separators=(",", ":"))
elif isinstance(value, float):
value = "%g" % value
sign_str = sign_str + key + "=" + str(value) + "&"
sign_str = sign_str[:-1]
hmacstr = hmac.new(
key=secret_key.get_secret_value().encode("utf-8"),
msg=sign_str.encode("utf-8"),
digestmod=hashlib.sha1,
).digest()
return base64.b64encode(hmacstr).decode("utf-8")
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
generations = []
for choice in response["choices"]:
message = _convert_dict_to_message(choice["messages"])
generations.append(ChatGeneration(message=message))
token_usage = response["usage"]
llm_output = {"token_usage": token_usage}
return ChatResult(generations=generations, llm_output=llm_output)
class ChatHunyuan(BaseChatModel):
"""Tencent Hunyuan chat models API by Tencent.
For more information, see https://cloud.tencent.com/document/product/1729
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"hunyuan_app_id": "HUNYUAN_APP_ID",
"hunyuan_secret_id": "HUNYUAN_SECRET_ID",
"hunyuan_secret_key": "HUNYUAN_SECRET_KEY",
}
@property
def lc_serializable(self) -> bool:
return True
hunyuan_api_base: str = Field(default=DEFAULT_API_BASE)
"""Hunyuan custom endpoints"""
hunyuan_app_id: Optional[int] = None
"""Hunyuan App ID"""
hunyuan_secret_id: Optional[str] = None
"""Hunyuan Secret ID"""
hunyuan_secret_key: Optional[SecretStr] = None
"""Hunyuan Secret Key"""
streaming: bool = False
"""Whether to stream the results or not."""
request_timeout: int = 60
"""Timeout for requests to Hunyuan API. Default is 60 seconds."""
query_id: Optional[str] = None
"""Query id for troubleshooting"""
temperature: float = 1.0
"""What sampling temperature to use."""
top_p: float = 1.0
"""What probability mass to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for API call not explicitly specified."""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["hunyuan_api_base"] = get_from_dict_or_env(
values,
"hunyuan_api_base",
"HUNYUAN_API_BASE",
DEFAULT_API_BASE,
)
values["hunyuan_app_id"] = get_from_dict_or_env(
values,
"hunyuan_app_id",
"HUNYUAN_APP_ID",
)
values["hunyuan_secret_id"] = get_from_dict_or_env(
values,
"hunyuan_secret_id",
"HUNYUAN_SECRET_ID",
)
values["hunyuan_secret_key"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"hunyuan_secret_key",
"HUNYUAN_SECRET_KEY",
)
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Hunyuan API."""
normal_params = {
"app_id": self.hunyuan_app_id,
"secret_id": self.hunyuan_secret_id,
"temperature": self.temperature,
"top_p": self.top_p,
}
if self.query_id is not None:
normal_params["query_id"] = self.query_id
return {**normal_params, **self.model_kwargs}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._stream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
res = self._chat(messages, **kwargs)
response = res.json()
if "error" in response:
raise ValueError(f"Error from Hunyuan api response: {response}")
return _create_chat_result(response)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
res = self._chat(messages, **kwargs)
default_chunk_class = AIMessageChunk
for chunk in res.iter_lines():
response = json.loads(chunk)
if "error" in response:
raise ValueError(f"Error from Hunyuan api response: {response}")
for choice in response["choices"]:
chunk = _convert_delta_to_message_chunk(
choice["delta"], default_chunk_class
)
default_chunk_class = chunk.__class__
yield ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(chunk.content)
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
if self.hunyuan_secret_key is None:
raise ValueError("Hunyuan secret key is not set.")
parameters = {**self._default_params, **kwargs}
headers = parameters.pop("headers", {})
timestamp = parameters.pop("timestamp", int(time.time()))
expired = parameters.pop("expired", timestamp + 24 * 60 * 60)
payload = {
"timestamp": timestamp,
"expired": expired,
"messages": [_convert_message_to_dict(m) for m in messages],
**parameters,
}
if self.streaming:
payload["stream"] = 1
url = self.hunyuan_api_base + DEFAULT_PATH
res = requests.post(
url=url,
timeout=self.request_timeout,
headers={
"Content-Type": "application/json",
"Authorization": _signature(
secret_key=self.hunyuan_secret_key, url=url, payload=payload
),
**headers,
},
json=payload,
stream=self.streaming,
)
return res
@property
def _llm_type(self) -> str:
return "hunyuan-chat"