mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
e7d6de6b1c
This makes sure OpenAI and ChatOpenAI have the same llm_output, and allow tracking usage per model. Same work for OpenAI was done in https://github.com/hwchase17/langchain/pull/1713.
150 lines
5.2 KiB
Python
150 lines
5.2 KiB
Python
"""Test ChatOpenAI wrapper."""
|
|
|
|
|
|
import pytest
|
|
|
|
from langchain.callbacks.base import CallbackManager
|
|
from langchain.chat_models.openai import ChatOpenAI
|
|
from langchain.schema import (
|
|
BaseMessage,
|
|
ChatGeneration,
|
|
ChatResult,
|
|
HumanMessage,
|
|
LLMResult,
|
|
SystemMessage,
|
|
)
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
|
|
def test_chat_openai() -> None:
|
|
"""Test ChatOpenAI wrapper."""
|
|
chat = ChatOpenAI(max_tokens=10)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_chat_openai_system_message() -> None:
|
|
"""Test ChatOpenAI wrapper with system message."""
|
|
chat = ChatOpenAI(max_tokens=10)
|
|
system_message = SystemMessage(content="You are to chat with the user.")
|
|
human_message = HumanMessage(content="Hello")
|
|
response = chat([system_message, human_message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_chat_openai_generate() -> None:
|
|
"""Test ChatOpenAI wrapper with generate."""
|
|
chat = ChatOpenAI(max_tokens=10, n=2)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.generate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
for generations in response.generations:
|
|
assert len(generations) == 2
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
def test_chat_openai_multiple_completions() -> None:
|
|
"""Test ChatOpenAI wrapper with multiple completions."""
|
|
chat = ChatOpenAI(max_tokens=10, n=5)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat._generate([message])
|
|
assert isinstance(response, ChatResult)
|
|
assert len(response.generations) == 5
|
|
for generation in response.generations:
|
|
assert isinstance(generation.message, BaseMessage)
|
|
assert isinstance(generation.message.content, str)
|
|
|
|
|
|
def test_chat_openai_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatOpenAI(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, BaseMessage)
|
|
|
|
|
|
def test_chat_openai_llm_output_contains_model_name() -> None:
|
|
"""Test llm_output contains model_name."""
|
|
chat = ChatOpenAI(max_tokens=10)
|
|
message = HumanMessage(content="Hello")
|
|
llm_result = chat.generate([[message]])
|
|
assert llm_result.llm_output is not None
|
|
assert llm_result.llm_output["model_name"] == chat.model_name
|
|
|
|
|
|
def test_chat_openai_streaming_llm_output_contains_model_name() -> None:
|
|
"""Test llm_output contains model_name."""
|
|
chat = ChatOpenAI(max_tokens=10, streaming=True)
|
|
message = HumanMessage(content="Hello")
|
|
llm_result = chat.generate([[message]])
|
|
assert llm_result.llm_output is not None
|
|
assert llm_result.llm_output["model_name"] == chat.model_name
|
|
|
|
|
|
def test_chat_openai_invalid_streaming_params() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
with pytest.raises(ValueError):
|
|
ChatOpenAI(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
n=5,
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_chat_openai() -> None:
|
|
"""Test async generation."""
|
|
chat = ChatOpenAI(max_tokens=10, n=2)
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
for generations in response.generations:
|
|
assert len(generations) == 2
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_chat_openai_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatOpenAI(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
for generations in response.generations:
|
|
assert len(generations) == 1
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|