langchain/libs/community/langchain_community/graphs/neo4j_graph.py
Leonid Ganeline 932c52c333
community[patch]: docstrings (#16810)
- added missed docstrings
- formated docstrings to the consistent form
2024-02-09 12:48:57 -08:00

270 lines
11 KiB
Python

from typing import Any, Dict, List, Optional
from langchain_core.utils import get_from_env
from langchain_community.graphs.graph_document import GraphDocument
from langchain_community.graphs.graph_store import GraphStore
node_properties_query = """
CALL apoc.meta.data()
YIELD label, other, elementType, type, property
WHERE NOT type = "RELATIONSHIP" AND elementType = "node"
WITH label AS nodeLabels, collect({property:property, type:type}) AS properties
RETURN {labels: nodeLabels, properties: properties} AS output
"""
rel_properties_query = """
CALL apoc.meta.data()
YIELD label, other, elementType, type, property
WHERE NOT type = "RELATIONSHIP" AND elementType = "relationship"
WITH label AS nodeLabels, collect({property:property, type:type}) AS properties
RETURN {type: nodeLabels, properties: properties} AS output
"""
rel_query = """
CALL apoc.meta.data()
YIELD label, other, elementType, type, property
WHERE type = "RELATIONSHIP" AND elementType = "node"
UNWIND other AS other_node
RETURN {start: label, type: property, end: toString(other_node)} AS output
"""
def value_sanitize(d: Dict[str, Any]) -> Dict[str, Any]:
"""Sanitize the input dictionary.
Sanitizes the input dictionary by removing embedding-like values,
lists with more than 128 elements, that are mostly irrelevant for
generating answers in a LLM context. These properties, if left in
results, can occupy significant context space and detract from
the LLM's performance by introducing unnecessary noise and cost.
"""
LIST_LIMIT = 128
# Create a new dictionary to avoid changing size during iteration
new_dict = {}
for key, value in d.items():
if isinstance(value, dict):
# Recurse to handle nested dictionaries
new_dict[key] = value_sanitize(value)
elif isinstance(value, list):
# check if it has less than LIST_LIMIT values
if len(value) < LIST_LIMIT:
# if value is a list, check if it contains dictionaries to clean
cleaned_list = []
for item in value:
if isinstance(item, dict):
cleaned_list.append(value_sanitize(item))
else:
cleaned_list.append(item)
new_dict[key] = cleaned_list # type: ignore[assignment]
else:
new_dict[key] = value
return new_dict
class Neo4jGraph(GraphStore):
"""Neo4j database wrapper for various graph operations.
Parameters:
url (Optional[str]): The URL of the Neo4j database server.
username (Optional[str]): The username for database authentication.
password (Optional[str]): The password for database authentication.
database (str): The name of the database to connect to. Default is 'neo4j'.
timeout (Optional[float]): The timeout for transactions in seconds.
Useful for terminating long-running queries.
By default, there is no timeout set.
sanitize (bool): A flag to indicate whether to remove lists with
more than 128 elements from results. Useful for removing
embedding-like properties from database responses. Default is False.
*Security note*: Make sure that the database connection uses credentials
that are narrowly-scoped to only include necessary permissions.
Failure to do so may result in data corruption or loss, since the calling
code may attempt commands that would result in deletion, mutation
of data if appropriately prompted or reading sensitive data if such
data is present in the database.
The best way to guard against such negative outcomes is to (as appropriate)
limit the permissions granted to the credentials used with this tool.
See https://python.langchain.com/docs/security for more information.
"""
def __init__(
self,
url: Optional[str] = None,
username: Optional[str] = None,
password: Optional[str] = None,
database: str = "neo4j",
timeout: Optional[float] = None,
sanitize: bool = False,
) -> None:
"""Create a new Neo4j graph wrapper instance."""
try:
import neo4j
except ImportError:
raise ValueError(
"Could not import neo4j python package. "
"Please install it with `pip install neo4j`."
)
url = get_from_env("url", "NEO4J_URI", url)
username = get_from_env("username", "NEO4J_USERNAME", username)
password = get_from_env("password", "NEO4J_PASSWORD", password)
database = get_from_env("database", "NEO4J_DATABASE", database)
self._driver = neo4j.GraphDatabase.driver(url, auth=(username, password))
self._database = database
self.timeout = timeout
self.sanitize = sanitize
self.schema: str = ""
self.structured_schema: Dict[str, Any] = {}
# Verify connection
try:
self._driver.verify_connectivity()
except neo4j.exceptions.ServiceUnavailable:
raise ValueError(
"Could not connect to Neo4j database. "
"Please ensure that the url is correct"
)
except neo4j.exceptions.AuthError:
raise ValueError(
"Could not connect to Neo4j database. "
"Please ensure that the username and password are correct"
)
# Set schema
try:
self.refresh_schema()
except neo4j.exceptions.ClientError as e:
if e.code == "Neo.ClientError.Procedure.ProcedureNotFound":
raise ValueError(
"Could not use APOC procedures. "
"Please ensure the APOC plugin is installed in Neo4j and that "
"'apoc.meta.data()' is allowed in Neo4j configuration "
)
raise e
@property
def get_schema(self) -> str:
"""Returns the schema of the Graph"""
return self.schema
@property
def get_structured_schema(self) -> Dict[str, Any]:
"""Returns the structured schema of the Graph"""
return self.structured_schema
def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]:
"""Query Neo4j database."""
from neo4j import Query
from neo4j.exceptions import CypherSyntaxError
with self._driver.session(database=self._database) as session:
try:
data = session.run(Query(text=query, timeout=self.timeout), params)
json_data = [r.data() for r in data]
if self.sanitize:
json_data = [value_sanitize(el) for el in json_data]
return json_data
except CypherSyntaxError as e:
raise ValueError(f"Generated Cypher Statement is not valid\n{e}")
def refresh_schema(self) -> None:
"""
Refreshes the Neo4j graph schema information.
"""
node_properties = [el["output"] for el in self.query(node_properties_query)]
rel_properties = [el["output"] for el in self.query(rel_properties_query)]
relationships = [el["output"] for el in self.query(rel_query)]
self.structured_schema = {
"node_props": {el["labels"]: el["properties"] for el in node_properties},
"rel_props": {el["type"]: el["properties"] for el in rel_properties},
"relationships": relationships,
}
# Format node properties
formatted_node_props = []
for el in node_properties:
props_str = ", ".join(
[f"{prop['property']}: {prop['type']}" for prop in el["properties"]]
)
formatted_node_props.append(f"{el['labels']} {{{props_str}}}")
# Format relationship properties
formatted_rel_props = []
for el in rel_properties:
props_str = ", ".join(
[f"{prop['property']}: {prop['type']}" for prop in el["properties"]]
)
formatted_rel_props.append(f"{el['type']} {{{props_str}}}")
# Format relationships
formatted_rels = [
f"(:{el['start']})-[:{el['type']}]->(:{el['end']})" for el in relationships
]
self.schema = "\n".join(
[
"Node properties are the following:",
",".join(formatted_node_props),
"Relationship properties are the following:",
",".join(formatted_rel_props),
"The relationships are the following:",
",".join(formatted_rels),
]
)
def add_graph_documents(
self, graph_documents: List[GraphDocument], include_source: bool = False
) -> None:
"""
Take GraphDocument as input as uses it to construct a graph.
"""
for document in graph_documents:
include_docs_query = (
"CREATE (d:Document) "
"SET d.text = $document.page_content "
"SET d += $document.metadata "
"WITH d "
)
# Import nodes
self.query(
(
f"{include_docs_query if include_source else ''}"
"UNWIND $data AS row "
"CALL apoc.merge.node([row.type], {id: row.id}, "
"row.properties, {}) YIELD node "
f"{'MERGE (d)-[:MENTIONS]->(node) ' if include_source else ''}"
"RETURN distinct 'done' AS result"
),
{
"data": [el.__dict__ for el in document.nodes],
"document": document.source.__dict__,
},
)
# Import relationships
self.query(
"UNWIND $data AS row "
"CALL apoc.merge.node([row.source_label], {id: row.source},"
"{}, {}) YIELD node as source "
"CALL apoc.merge.node([row.target_label], {id: row.target},"
"{}, {}) YIELD node as target "
"CALL apoc.merge.relationship(source, row.type, "
"{}, row.properties, target) YIELD rel "
"RETURN distinct 'done'",
{
"data": [
{
"source": el.source.id,
"source_label": el.source.type,
"target": el.target.id,
"target_label": el.target.type,
"type": el.type.replace(" ", "_").upper(),
"properties": el.properties,
}
for el in document.relationships
]
},
)