mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
4384fa8e49
[Dria](https://dria.co/) is a hub of public RAG models for developers to both contribute and utilize a shared embedding lake. This PR adds a retriever that can retrieve documents from Dria.
96 lines
3.3 KiB
Python
96 lines
3.3 KiB
Python
import logging
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class DriaAPIWrapper:
|
|
"""Wrapper around Dria API.
|
|
|
|
This wrapper facilitates interactions with Dria's vector search
|
|
and retrieval services, including creating knowledge bases, inserting data,
|
|
and fetching search results.
|
|
|
|
Attributes:
|
|
api_key: Your API key for accessing Dria.
|
|
contract_id: The contract ID of the knowledge base to interact with.
|
|
top_n: Number of top results to fetch for a search.
|
|
"""
|
|
|
|
def __init__(
|
|
self, api_key: str, contract_id: Optional[str] = None, top_n: int = 10
|
|
):
|
|
try:
|
|
from dria import Dria, Models
|
|
except ImportError:
|
|
logger.error(
|
|
"""Dria is not installed. Please install Dria to use this wrapper.
|
|
|
|
You can install Dria using the following command:
|
|
pip install dria
|
|
"""
|
|
)
|
|
return
|
|
|
|
self.api_key = api_key
|
|
self.models = Models
|
|
self.contract_id = contract_id
|
|
self.top_n = top_n
|
|
self.dria_client = Dria(api_key=self.api_key)
|
|
if self.contract_id:
|
|
self.dria_client.set_contract(self.contract_id)
|
|
|
|
def create_knowledge_base(
|
|
self,
|
|
name: str,
|
|
description: str,
|
|
category: str,
|
|
embedding: str,
|
|
) -> str:
|
|
"""Create a new knowledge base."""
|
|
contract_id = self.dria_client.create(
|
|
name=name, embedding=embedding, category=category, description=description
|
|
)
|
|
logger.info(f"Knowledge base created with ID: {contract_id}")
|
|
self.contract_id = contract_id
|
|
return contract_id
|
|
|
|
def insert_data(self, data: List[Dict[str, Any]]) -> str:
|
|
"""Insert data into the knowledge base."""
|
|
response = self.dria_client.insert_text(data)
|
|
logger.info(f"Data inserted: {response}")
|
|
return response
|
|
|
|
def search(self, query: str) -> List[Dict[str, Any]]:
|
|
"""Perform a text-based search."""
|
|
results = self.dria_client.search(query, top_n=self.top_n)
|
|
logger.info(f"Search results: {results}")
|
|
return results
|
|
|
|
def query_with_vector(self, vector: List[float]) -> List[Dict[str, Any]]:
|
|
"""Perform a vector-based query."""
|
|
vector_query_results = self.dria_client.query(vector, top_n=self.top_n)
|
|
logger.info(f"Vector query results: {vector_query_results}")
|
|
return vector_query_results
|
|
|
|
def run(self, query: Union[str, List[float]]) -> Optional[List[Dict[str, Any]]]:
|
|
"""Method to handle both text-based searches and vector-based queries.
|
|
|
|
Args:
|
|
query: A string for text-based search or a list of floats for
|
|
vector-based query.
|
|
|
|
Returns:
|
|
The search or query results from Dria.
|
|
"""
|
|
if isinstance(query, str):
|
|
return self.search(query)
|
|
elif isinstance(query, list) and all(isinstance(item, float) for item in query):
|
|
return self.query_with_vector(query)
|
|
else:
|
|
logger.error(
|
|
"""Invalid query type. Please provide a string for text search or a
|
|
list of floats for vector query."""
|
|
)
|
|
return None
|