mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
791d59a2c8
Issue: we have several helper functions to import third-party libraries like import_uptrain in [community.callbacks](https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.import_uptrain.html#langchain_community.callbacks.uptrain_callback.import_uptrain). And we have core.utils.utils.guard_import that works exactly for this purpose. The import_<package> functions work inconsistently and rather be private functions. Change: replaced these functions with the guard_import function. Related to #21133
336 lines
11 KiB
Python
336 lines
11 KiB
Python
import time
|
|
from typing import Any, Dict, List, Optional
|
|
from uuid import UUID
|
|
|
|
from langchain_core.callbacks import BaseCallbackHandler
|
|
from langchain_core.outputs import LLMResult
|
|
from langchain_core.utils import guard_import
|
|
|
|
from langchain_community.callbacks.utils import import_pandas
|
|
|
|
# Define constants
|
|
|
|
# LLMResult keys
|
|
TOKEN_USAGE = "token_usage"
|
|
TOTAL_TOKENS = "total_tokens"
|
|
PROMPT_TOKENS = "prompt_tokens"
|
|
COMPLETION_TOKENS = "completion_tokens"
|
|
RUN_ID = "run_id"
|
|
MODEL_NAME = "model_name"
|
|
GOOD = "good"
|
|
BAD = "bad"
|
|
NEUTRAL = "neutral"
|
|
SUCCESS = "success"
|
|
FAILURE = "failure"
|
|
|
|
# Default values
|
|
DEFAULT_MAX_TOKEN = 65536
|
|
DEFAULT_MAX_DURATION = 120000
|
|
|
|
# Fiddler specific constants
|
|
PROMPT = "prompt"
|
|
RESPONSE = "response"
|
|
CONTEXT = "context"
|
|
DURATION = "duration"
|
|
FEEDBACK = "feedback"
|
|
LLM_STATUS = "llm_status"
|
|
|
|
FEEDBACK_POSSIBLE_VALUES = [GOOD, BAD, NEUTRAL]
|
|
|
|
# Define a dataset dictionary
|
|
_dataset_dict = {
|
|
PROMPT: ["fiddler"] * 10,
|
|
RESPONSE: ["fiddler"] * 10,
|
|
CONTEXT: ["fiddler"] * 10,
|
|
FEEDBACK: ["good"] * 10,
|
|
LLM_STATUS: ["success"] * 10,
|
|
MODEL_NAME: ["fiddler"] * 10,
|
|
RUN_ID: ["123e4567-e89b-12d3-a456-426614174000"] * 10,
|
|
TOTAL_TOKENS: [0, DEFAULT_MAX_TOKEN] * 5,
|
|
PROMPT_TOKENS: [0, DEFAULT_MAX_TOKEN] * 5,
|
|
COMPLETION_TOKENS: [0, DEFAULT_MAX_TOKEN] * 5,
|
|
DURATION: [1, DEFAULT_MAX_DURATION] * 5,
|
|
}
|
|
|
|
|
|
def import_fiddler() -> Any:
|
|
"""Import the fiddler python package and raise an error if it is not installed."""
|
|
return guard_import("fiddler", pip_name="fiddler-client")
|
|
|
|
|
|
# First, define custom callback handler implementations
|
|
class FiddlerCallbackHandler(BaseCallbackHandler):
|
|
def __init__(
|
|
self,
|
|
url: str,
|
|
org: str,
|
|
project: str,
|
|
model: str,
|
|
api_key: str,
|
|
) -> None:
|
|
"""
|
|
Initialize Fiddler callback handler.
|
|
|
|
Args:
|
|
url: Fiddler URL (e.g. https://demo.fiddler.ai).
|
|
Make sure to include the protocol (http/https).
|
|
org: Fiddler organization id
|
|
project: Fiddler project name to publish events to
|
|
model: Fiddler model name to publish events to
|
|
api_key: Fiddler authentication token
|
|
"""
|
|
super().__init__()
|
|
# Initialize Fiddler client and other necessary properties
|
|
self.fdl = import_fiddler()
|
|
self.pd = import_pandas()
|
|
|
|
self.url = url
|
|
self.org = org
|
|
self.project = project
|
|
self.model = model
|
|
self.api_key = api_key
|
|
self._df = self.pd.DataFrame(_dataset_dict)
|
|
|
|
self.run_id_prompts: Dict[UUID, List[str]] = {}
|
|
self.run_id_response: Dict[UUID, List[str]] = {}
|
|
self.run_id_starttime: Dict[UUID, int] = {}
|
|
|
|
# Initialize Fiddler client here
|
|
self.fiddler_client = self.fdl.FiddlerApi(url, org_id=org, auth_token=api_key)
|
|
|
|
if self.project not in self.fiddler_client.get_project_names():
|
|
print( # noqa: T201
|
|
f"adding project {self.project}." "This only has to be done once."
|
|
)
|
|
try:
|
|
self.fiddler_client.add_project(self.project)
|
|
except Exception as e:
|
|
print( # noqa: T201
|
|
f"Error adding project {self.project}:"
|
|
"{e}. Fiddler integration will not work."
|
|
)
|
|
raise e
|
|
|
|
dataset_info = self.fdl.DatasetInfo.from_dataframe(
|
|
self._df, max_inferred_cardinality=0
|
|
)
|
|
|
|
# Set feedback column to categorical
|
|
for i in range(len(dataset_info.columns)):
|
|
if dataset_info.columns[i].name == FEEDBACK:
|
|
dataset_info.columns[i].data_type = self.fdl.DataType.CATEGORY
|
|
dataset_info.columns[i].possible_values = FEEDBACK_POSSIBLE_VALUES
|
|
|
|
elif dataset_info.columns[i].name == LLM_STATUS:
|
|
dataset_info.columns[i].data_type = self.fdl.DataType.CATEGORY
|
|
dataset_info.columns[i].possible_values = [SUCCESS, FAILURE]
|
|
|
|
if self.model not in self.fiddler_client.get_model_names(self.project):
|
|
if self.model not in self.fiddler_client.get_dataset_names(self.project):
|
|
print( # noqa: T201
|
|
f"adding dataset {self.model} to project {self.project}."
|
|
"This only has to be done once."
|
|
)
|
|
try:
|
|
self.fiddler_client.upload_dataset(
|
|
project_id=self.project,
|
|
dataset_id=self.model,
|
|
dataset={"train": self._df},
|
|
info=dataset_info,
|
|
)
|
|
except Exception as e:
|
|
print( # noqa: T201
|
|
f"Error adding dataset {self.model}: {e}."
|
|
"Fiddler integration will not work."
|
|
)
|
|
raise e
|
|
|
|
model_info = self.fdl.ModelInfo.from_dataset_info(
|
|
dataset_info=dataset_info,
|
|
dataset_id="train",
|
|
model_task=self.fdl.ModelTask.LLM,
|
|
features=[PROMPT, CONTEXT, RESPONSE],
|
|
target=FEEDBACK,
|
|
metadata_cols=[
|
|
RUN_ID,
|
|
TOTAL_TOKENS,
|
|
PROMPT_TOKENS,
|
|
COMPLETION_TOKENS,
|
|
MODEL_NAME,
|
|
DURATION,
|
|
],
|
|
custom_features=self.custom_features,
|
|
)
|
|
print( # noqa: T201
|
|
f"adding model {self.model} to project {self.project}."
|
|
"This only has to be done once."
|
|
)
|
|
try:
|
|
self.fiddler_client.add_model(
|
|
project_id=self.project,
|
|
dataset_id=self.model,
|
|
model_id=self.model,
|
|
model_info=model_info,
|
|
)
|
|
except Exception as e:
|
|
print( # noqa: T201
|
|
f"Error adding model {self.model}: {e}."
|
|
"Fiddler integration will not work."
|
|
)
|
|
raise e
|
|
|
|
@property
|
|
def custom_features(self) -> list:
|
|
"""
|
|
Define custom features for the model to automatically enrich the data with.
|
|
Here, we enable the following enrichments:
|
|
- Automatic Embedding generation for prompt and response
|
|
- Text Statistics such as:
|
|
- Automated Readability Index
|
|
- Coleman Liau Index
|
|
- Dale Chall Readability Score
|
|
- Difficult Words
|
|
- Flesch Reading Ease
|
|
- Flesch Kincaid Grade
|
|
- Gunning Fog
|
|
- Linsear Write Formula
|
|
- PII - Personal Identifiable Information
|
|
- Sentiment Analysis
|
|
|
|
"""
|
|
|
|
return [
|
|
self.fdl.Enrichment(
|
|
name="Prompt Embedding",
|
|
enrichment="embedding",
|
|
columns=[PROMPT],
|
|
),
|
|
self.fdl.TextEmbedding(
|
|
name="Prompt CF",
|
|
source_column=PROMPT,
|
|
column="Prompt Embedding",
|
|
),
|
|
self.fdl.Enrichment(
|
|
name="Response Embedding",
|
|
enrichment="embedding",
|
|
columns=[RESPONSE],
|
|
),
|
|
self.fdl.TextEmbedding(
|
|
name="Response CF",
|
|
source_column=RESPONSE,
|
|
column="Response Embedding",
|
|
),
|
|
self.fdl.Enrichment(
|
|
name="Text Statistics",
|
|
enrichment="textstat",
|
|
columns=[PROMPT, RESPONSE],
|
|
config={
|
|
"statistics": [
|
|
"automated_readability_index",
|
|
"coleman_liau_index",
|
|
"dale_chall_readability_score",
|
|
"difficult_words",
|
|
"flesch_reading_ease",
|
|
"flesch_kincaid_grade",
|
|
"gunning_fog",
|
|
"linsear_write_formula",
|
|
]
|
|
},
|
|
),
|
|
self.fdl.Enrichment(
|
|
name="PII",
|
|
enrichment="pii",
|
|
columns=[PROMPT, RESPONSE],
|
|
),
|
|
self.fdl.Enrichment(
|
|
name="Sentiment",
|
|
enrichment="sentiment",
|
|
columns=[PROMPT, RESPONSE],
|
|
),
|
|
]
|
|
|
|
def _publish_events(
|
|
self,
|
|
run_id: UUID,
|
|
prompt_responses: List[str],
|
|
duration: int,
|
|
llm_status: str,
|
|
model_name: Optional[str] = "",
|
|
token_usage_dict: Optional[Dict[str, Any]] = None,
|
|
) -> None:
|
|
"""
|
|
Publish events to fiddler
|
|
"""
|
|
|
|
prompt_count = len(self.run_id_prompts[run_id])
|
|
df = self.pd.DataFrame(
|
|
{
|
|
PROMPT: self.run_id_prompts[run_id],
|
|
RESPONSE: prompt_responses,
|
|
RUN_ID: [str(run_id)] * prompt_count,
|
|
DURATION: [duration] * prompt_count,
|
|
LLM_STATUS: [llm_status] * prompt_count,
|
|
MODEL_NAME: [model_name] * prompt_count,
|
|
}
|
|
)
|
|
|
|
if token_usage_dict:
|
|
for key, value in token_usage_dict.items():
|
|
df[key] = [value] * prompt_count if isinstance(value, int) else value
|
|
|
|
try:
|
|
if df.shape[0] > 1:
|
|
self.fiddler_client.publish_events_batch(self.project, self.model, df)
|
|
else:
|
|
df_dict = df.to_dict(orient="records")
|
|
self.fiddler_client.publish_event(
|
|
self.project, self.model, event=df_dict[0]
|
|
)
|
|
except Exception as e:
|
|
print( # noqa: T201
|
|
f"Error publishing events to fiddler: {e}. continuing..."
|
|
)
|
|
|
|
def on_llm_start(
|
|
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
|
) -> Any:
|
|
run_id = kwargs[RUN_ID]
|
|
self.run_id_prompts[run_id] = prompts
|
|
self.run_id_starttime[run_id] = int(time.time() * 1000)
|
|
|
|
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
|
flattened_llmresult = response.flatten()
|
|
run_id = kwargs[RUN_ID]
|
|
run_duration = int(time.time() * 1000) - self.run_id_starttime[run_id]
|
|
model_name = ""
|
|
token_usage_dict = {}
|
|
|
|
if isinstance(response.llm_output, dict):
|
|
token_usage_dict = {
|
|
k: v
|
|
for k, v in response.llm_output.items()
|
|
if k in [TOTAL_TOKENS, PROMPT_TOKENS, COMPLETION_TOKENS]
|
|
}
|
|
model_name = response.llm_output.get(MODEL_NAME, "")
|
|
|
|
prompt_responses = [
|
|
llmresult.generations[0][0].text for llmresult in flattened_llmresult
|
|
]
|
|
|
|
self._publish_events(
|
|
run_id,
|
|
prompt_responses,
|
|
run_duration,
|
|
SUCCESS,
|
|
model_name,
|
|
token_usage_dict,
|
|
)
|
|
|
|
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
|
|
run_id = kwargs[RUN_ID]
|
|
duration = int(time.time() * 1000) - self.run_id_starttime[run_id]
|
|
|
|
self._publish_events(
|
|
run_id, [""] * len(self.run_id_prompts[run_id]), duration, FAILURE
|
|
)
|