mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
159 lines
4.4 KiB
Plaintext
159 lines
4.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fbc4bf6e",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Run arbitrary functions\n",
|
|
"\n",
|
|
"You can use arbitrary functions in the pipeline\n",
|
|
"\n",
|
|
"Note that all inputs to these functions need to be a SINGLE argument. If you have a function that accepts multiple arguments, you should write a wrapper that accepts a single input and unpacks it into multiple argument."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 77,
|
|
"id": "6bb221b3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.schema.runnable import RunnableLambda\n",
|
|
"\n",
|
|
"def length_function(text):\n",
|
|
" return len(text)\n",
|
|
"\n",
|
|
"def _multiple_length_function(text1, text2):\n",
|
|
" return len(text1) * len(text2)\n",
|
|
"\n",
|
|
"def multiple_length_function(_dict):\n",
|
|
" return _multiple_length_function(_dict[\"text1\"], _dict[\"text2\"])\n",
|
|
"\n",
|
|
"prompt = ChatPromptTemplate.from_template(\"what is {a} + {b}\")\n",
|
|
"\n",
|
|
"chain1 = prompt | model\n",
|
|
"\n",
|
|
"chain = {\n",
|
|
" \"a\": itemgetter(\"foo\") | RunnableLambda(length_function),\n",
|
|
" \"b\": {\"text1\": itemgetter(\"foo\"), \"text2\": itemgetter(\"bar\")} | RunnableLambda(multiple_length_function)\n",
|
|
"} | prompt | model"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 78,
|
|
"id": "5488ec85",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"AIMessage(content='3 + 9 equals 12.', additional_kwargs={}, example=False)"
|
|
]
|
|
},
|
|
"execution_count": 78,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"chain.invoke({\"foo\": \"bar\", \"bar\": \"gah\"})"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4728ddd9-914d-42ce-ae9b-72c9ce8ec940",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Accepting a Runnable Config\n",
|
|
"\n",
|
|
"Runnable lambdas can optionally accept a [RunnableConfig](https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.RunnableConfig.html?highlight=runnableconfig#langchain.schema.runnable.config.RunnableConfig), which they can use to pass callbacks, tags, and other configuration information to nested runs."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 139,
|
|
"id": "80b3b5f6-5d58-44b9-807e-cce9a46bf49f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.schema.runnable import RunnableConfig"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 149,
|
|
"id": "ff0daf0c-49dd-4d21-9772-e5fa133c5f36",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import json\n",
|
|
"\n",
|
|
"def parse_or_fix(text: str, config: RunnableConfig):\n",
|
|
" fixing_chain = (\n",
|
|
" ChatPromptTemplate.from_template(\n",
|
|
" \"Fix the following text:\\n\\n```text\\n{input}\\n```\\nError: {error}\"\n",
|
|
" \" Don't narrate, just respond with the fixed data.\"\n",
|
|
" )\n",
|
|
" | ChatOpenAI()\n",
|
|
" | StrOutputParser()\n",
|
|
" )\n",
|
|
" for _ in range(3):\n",
|
|
" try:\n",
|
|
" return json.loads(text)\n",
|
|
" except Exception as e:\n",
|
|
" text = fixing_chain.invoke({\"input\": text, \"error\": e}, config)\n",
|
|
" return \"Failed to parse\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 152,
|
|
"id": "1a5e709e-9d75-48c7-bb9c-503251990505",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Tokens Used: 65\n",
|
|
"\tPrompt Tokens: 56\n",
|
|
"\tCompletion Tokens: 9\n",
|
|
"Successful Requests: 1\n",
|
|
"Total Cost (USD): $0.00010200000000000001\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain.callbacks import get_openai_callback\n",
|
|
"\n",
|
|
"with get_openai_callback() as cb:\n",
|
|
" RunnableLambda(parse_or_fix).invoke(\"{foo: bar}\", {\"tags\": [\"my-tag\"], \"callbacks\": [cb]})\n",
|
|
" print(cb)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|