mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
d068e8ea54
**Description:** Change type hint on `QuerySQLDataBaseTool` to be compatible with SQLAlchemy v1.4.x. **Issue:** Users locked to `SQLAlchemy < 2.x` are unable to import `QuerySQLDataBaseTool`. closes https://github.com/langchain-ai/langchain/issues/17819 **Dependencies:** None
149 lines
4.8 KiB
Python
149 lines
4.8 KiB
Python
# flake8: noqa
|
|
"""Tools for interacting with a SQL database."""
|
|
from typing import Any, Dict, Optional, Sequence, Type, Union
|
|
|
|
from sqlalchemy.engine import Result
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
|
|
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForToolRun,
|
|
CallbackManagerForToolRun,
|
|
)
|
|
from langchain_core.prompts import PromptTemplate
|
|
from langchain_community.utilities.sql_database import SQLDatabase
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_community.tools.sql_database.prompt import QUERY_CHECKER
|
|
|
|
|
|
class BaseSQLDatabaseTool(BaseModel):
|
|
"""Base tool for interacting with a SQL database."""
|
|
|
|
db: SQLDatabase = Field(exclude=True)
|
|
|
|
class Config(BaseTool.Config):
|
|
pass
|
|
|
|
|
|
class _QuerySQLDataBaseToolInput(BaseModel):
|
|
query: str = Field(..., description="A detailed and correct SQL query.")
|
|
|
|
|
|
class QuerySQLDataBaseTool(BaseSQLDatabaseTool, BaseTool):
|
|
"""Tool for querying a SQL database."""
|
|
|
|
name: str = "sql_db_query"
|
|
description: str = """
|
|
Execute a SQL query against the database and get back the result..
|
|
If the query is not correct, an error message will be returned.
|
|
If an error is returned, rewrite the query, check the query, and try again.
|
|
"""
|
|
|
|
def _run(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> Union[str, Sequence[Dict[str, Any]], Result]:
|
|
"""Execute the query, return the results or an error message."""
|
|
return self.db.run_no_throw(query)
|
|
|
|
|
|
class _InfoSQLDatabaseToolInput(BaseModel):
|
|
table_names: str = Field(
|
|
...,
|
|
description=(
|
|
"A comma-separated list of the table names for which to return the schema. "
|
|
"Example input: 'table1, table2, table3'"
|
|
),
|
|
)
|
|
|
|
|
|
class InfoSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
|
|
"""Tool for getting metadata about a SQL database."""
|
|
|
|
name: str = "sql_db_schema"
|
|
description: str = "Get the schema and sample rows for the specified SQL tables."
|
|
args_schema: Type[BaseModel] = _InfoSQLDatabaseToolInput
|
|
|
|
def _run(
|
|
self,
|
|
table_names: str,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Get the schema for tables in a comma-separated list."""
|
|
return self.db.get_table_info_no_throw(
|
|
[t.strip() for t in table_names.split(",")]
|
|
)
|
|
|
|
|
|
class ListSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
|
|
"""Tool for getting tables names."""
|
|
|
|
name: str = "sql_db_list_tables"
|
|
description: str = "Input is an empty string, output is a comma separated list of tables in the database."
|
|
|
|
def _run(
|
|
self,
|
|
tool_input: str = "",
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Get the schema for a specific table."""
|
|
return ", ".join(self.db.get_usable_table_names())
|
|
|
|
|
|
class QuerySQLCheckerTool(BaseSQLDatabaseTool, BaseTool):
|
|
"""Use an LLM to check if a query is correct.
|
|
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
|
|
|
|
template: str = QUERY_CHECKER
|
|
llm: BaseLanguageModel
|
|
llm_chain: Any = Field(init=False)
|
|
name: str = "sql_db_query_checker"
|
|
description: str = """
|
|
Use this tool to double check if your query is correct before executing it.
|
|
Always use this tool before executing a query with sql_db_query!
|
|
"""
|
|
|
|
@root_validator(pre=True)
|
|
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
if "llm_chain" not in values:
|
|
from langchain.chains.llm import LLMChain
|
|
|
|
values["llm_chain"] = LLMChain(
|
|
llm=values.get("llm"),
|
|
prompt=PromptTemplate(
|
|
template=QUERY_CHECKER, input_variables=["dialect", "query"]
|
|
),
|
|
)
|
|
|
|
if values["llm_chain"].prompt.input_variables != ["dialect", "query"]:
|
|
raise ValueError(
|
|
"LLM chain for QueryCheckerTool must have input variables ['query', 'dialect']"
|
|
)
|
|
|
|
return values
|
|
|
|
def _run(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Use the LLM to check the query."""
|
|
return self.llm_chain.predict(
|
|
query=query,
|
|
dialect=self.db.dialect,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
)
|
|
|
|
async def _arun(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
return await self.llm_chain.apredict(
|
|
query=query,
|
|
dialect=self.db.dialect,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
)
|