langchain/templates/rag-multi-modal-local/ingest.py

38 lines
1021 B
Python

import os
from pathlib import Path
from langchain_chroma import Chroma
from langchain_nomic import NomicMultimodalEmbeddings
# Load images
img_dump_path = Path(__file__).parent / "docs/"
rel_img_dump_path = img_dump_path.relative_to(Path.cwd())
image_uris = sorted(
[
os.path.join(rel_img_dump_path, image_name)
for image_name in os.listdir(rel_img_dump_path)
if image_name.endswith(".jpg")
]
)
# Index
vectorstore = Path(__file__).parent / "chroma_db_multi_modal"
re_vectorstore_path = vectorstore.relative_to(Path.cwd())
# Load embedding function
print("Loading embedding function")
embedding = NomicMultimodalEmbeddings(
vision_model="nomic-embed-vision-v1", text_model="nomic-embed-text-v1"
)
# Create chroma
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"),
embedding_function=embedding,
)
# Add images
print("Embedding images")
vectorstore_mmembd.add_images(uris=image_uris)