mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
56 lines
1.4 KiB
Python
56 lines
1.4 KiB
Python
import os
|
|
|
|
from langchain.embeddings import BedrockEmbeddings
|
|
from langchain.llms.bedrock import Bedrock
|
|
from langchain.prompts import ChatPromptTemplate
|
|
from langchain.pydantic_v1 import BaseModel
|
|
from langchain.schema.output_parser import StrOutputParser
|
|
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
|
from langchain.vectorstores import FAISS
|
|
|
|
# Get region and profile from env
|
|
region = os.environ.get("AWS_DEFAULT_REGION", "us-east-1")
|
|
profile = os.environ.get("AWS_PROFILE", "default")
|
|
|
|
# Set LLM and embeddings
|
|
model = Bedrock(
|
|
model_id="anthropic.claude-v2",
|
|
region_name=region,
|
|
credentials_profile_name=profile,
|
|
model_kwargs={"max_tokens_to_sample": 200},
|
|
)
|
|
bedrock_embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v1")
|
|
|
|
# Add to vectorDB
|
|
vectorstore = FAISS.from_texts(
|
|
["harrison worked at kensho"], embedding=bedrock_embeddings
|
|
)
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
# Get retriever from vectorstore
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
# RAG prompt
|
|
template = """Answer the question based only on the following context:
|
|
{context}
|
|
Question: {question}
|
|
"""
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
# RAG
|
|
chain = (
|
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
|
| prompt
|
|
| model
|
|
| StrOutputParser()
|
|
)
|
|
|
|
|
|
# Add typing for input
|
|
class Question(BaseModel):
|
|
__root__: str
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|