mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
2673b3a314
Create pydantic v1 namespace in langchain experimental
81 lines
3.2 KiB
Python
81 lines
3.2 KiB
Python
import time
|
|
from typing import Any, Callable, List
|
|
|
|
from langchain.prompts.chat import (
|
|
BaseChatPromptTemplate,
|
|
)
|
|
from langchain.schema.messages import BaseMessage, HumanMessage, SystemMessage
|
|
from langchain.tools.base import BaseTool
|
|
from langchain.vectorstores.base import VectorStoreRetriever
|
|
from pydantic_v1 import BaseModel
|
|
|
|
from langchain_experimental.autonomous_agents.autogpt.prompt_generator import get_prompt
|
|
|
|
|
|
class AutoGPTPrompt(BaseChatPromptTemplate, BaseModel):
|
|
"""Prompt for AutoGPT."""
|
|
|
|
ai_name: str
|
|
ai_role: str
|
|
tools: List[BaseTool]
|
|
token_counter: Callable[[str], int]
|
|
send_token_limit: int = 4196
|
|
|
|
def construct_full_prompt(self, goals: List[str]) -> str:
|
|
prompt_start = (
|
|
"Your decisions must always be made independently "
|
|
"without seeking user assistance.\n"
|
|
"Play to your strengths as an LLM and pursue simple "
|
|
"strategies with no legal complications.\n"
|
|
"If you have completed all your tasks, make sure to "
|
|
'use the "finish" command.'
|
|
)
|
|
# Construct full prompt
|
|
full_prompt = (
|
|
f"You are {self.ai_name}, {self.ai_role}\n{prompt_start}\n\nGOALS:\n\n"
|
|
)
|
|
for i, goal in enumerate(goals):
|
|
full_prompt += f"{i+1}. {goal}\n"
|
|
|
|
full_prompt += f"\n\n{get_prompt(self.tools)}"
|
|
return full_prompt
|
|
|
|
def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
|
|
base_prompt = SystemMessage(content=self.construct_full_prompt(kwargs["goals"]))
|
|
time_prompt = SystemMessage(
|
|
content=f"The current time and date is {time.strftime('%c')}"
|
|
)
|
|
used_tokens = self.token_counter(base_prompt.content) + self.token_counter(
|
|
time_prompt.content
|
|
)
|
|
memory: VectorStoreRetriever = kwargs["memory"]
|
|
previous_messages = kwargs["messages"]
|
|
relevant_docs = memory.get_relevant_documents(str(previous_messages[-10:]))
|
|
relevant_memory = [d.page_content for d in relevant_docs]
|
|
relevant_memory_tokens = sum(
|
|
[self.token_counter(doc) for doc in relevant_memory]
|
|
)
|
|
while used_tokens + relevant_memory_tokens > 2500:
|
|
relevant_memory = relevant_memory[:-1]
|
|
relevant_memory_tokens = sum(
|
|
[self.token_counter(doc) for doc in relevant_memory]
|
|
)
|
|
content_format = (
|
|
f"This reminds you of these events "
|
|
f"from your past:\n{relevant_memory}\n\n"
|
|
)
|
|
memory_message = SystemMessage(content=content_format)
|
|
used_tokens += self.token_counter(memory_message.content)
|
|
historical_messages: List[BaseMessage] = []
|
|
for message in previous_messages[-10:][::-1]:
|
|
message_tokens = self.token_counter(message.content)
|
|
if used_tokens + message_tokens > self.send_token_limit - 1000:
|
|
break
|
|
historical_messages = [message] + historical_messages
|
|
used_tokens += message_tokens
|
|
input_message = HumanMessage(content=kwargs["user_input"])
|
|
messages: List[BaseMessage] = [base_prompt, time_prompt, memory_message]
|
|
messages += historical_messages
|
|
messages.append(input_message)
|
|
return messages
|