mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
e8d46bdd9b
# Removed usage of deprecated methods Replaced `SQLDatabaseChain` deprecated direct initialisation with `from_llm` method ## Who can review? @hwchase17 @agola11 --------- Co-authored-by: imeckr <chandanroutray2012@gmail.com> Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
477 lines
19 KiB
Python
477 lines
19 KiB
Python
"""Functionality for loading chains."""
|
|
import json
|
|
from pathlib import Path
|
|
from typing import Any, Union
|
|
|
|
import yaml
|
|
|
|
from langchain.chains.api.base import APIChain
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
|
|
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain
|
|
from langchain.chains.combine_documents.refine import RefineDocumentsChain
|
|
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
|
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.chains.llm_bash.base import LLMBashChain
|
|
from langchain.chains.llm_checker.base import LLMCheckerChain
|
|
from langchain.chains.llm_math.base import LLMMathChain
|
|
from langchain.chains.llm_requests import LLMRequestsChain
|
|
from langchain.chains.pal.base import PALChain
|
|
from langchain.chains.qa_with_sources.base import QAWithSourcesChain
|
|
from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain
|
|
from langchain.chains.retrieval_qa.base import VectorDBQA
|
|
from langchain.chains.sql_database.base import SQLDatabaseChain
|
|
from langchain.llms.loading import load_llm, load_llm_from_config
|
|
from langchain.prompts.loading import load_prompt, load_prompt_from_config
|
|
from langchain.utilities.loading import try_load_from_hub
|
|
|
|
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/"
|
|
|
|
|
|
def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain:
|
|
"""Load LLM chain from config dict."""
|
|
if "llm" in config:
|
|
llm_config = config.pop("llm")
|
|
llm = load_llm_from_config(llm_config)
|
|
elif "llm_path" in config:
|
|
llm = load_llm(config.pop("llm_path"))
|
|
else:
|
|
raise ValueError("One of `llm` or `llm_path` must be present.")
|
|
|
|
if "prompt" in config:
|
|
prompt_config = config.pop("prompt")
|
|
prompt = load_prompt_from_config(prompt_config)
|
|
elif "prompt_path" in config:
|
|
prompt = load_prompt(config.pop("prompt_path"))
|
|
else:
|
|
raise ValueError("One of `prompt` or `prompt_path` must be present.")
|
|
|
|
return LLMChain(llm=llm, prompt=prompt, **config)
|
|
|
|
|
|
def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder:
|
|
"""Load hypothetical document embedder chain from config dict."""
|
|
if "llm_chain" in config:
|
|
llm_chain_config = config.pop("llm_chain")
|
|
llm_chain = load_chain_from_config(llm_chain_config)
|
|
elif "llm_chain_path" in config:
|
|
llm_chain = load_chain(config.pop("llm_chain_path"))
|
|
else:
|
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
|
|
if "embeddings" in kwargs:
|
|
embeddings = kwargs.pop("embeddings")
|
|
else:
|
|
raise ValueError("`embeddings` must be present.")
|
|
return HypotheticalDocumentEmbedder(
|
|
llm_chain=llm_chain, base_embeddings=embeddings, **config
|
|
)
|
|
|
|
|
|
def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain:
|
|
if "llm_chain" in config:
|
|
llm_chain_config = config.pop("llm_chain")
|
|
llm_chain = load_chain_from_config(llm_chain_config)
|
|
elif "llm_chain_path" in config:
|
|
llm_chain = load_chain(config.pop("llm_chain_path"))
|
|
else:
|
|
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
|
|
|
|
if not isinstance(llm_chain, LLMChain):
|
|
raise ValueError(f"Expected LLMChain, got {llm_chain}")
|
|
|
|
if "document_prompt" in config:
|
|
prompt_config = config.pop("document_prompt")
|
|
document_prompt = load_prompt_from_config(prompt_config)
|
|
elif "document_prompt_path" in config:
|
|
document_prompt = load_prompt(config.pop("document_prompt_path"))
|
|
else:
|
|
raise ValueError(
|
|
"One of `document_prompt` or `document_prompt_path` must be present."
|
|
)
|
|
|
|
return StuffDocumentsChain(
|
|
llm_chain=llm_chain, document_prompt=document_prompt, **config
|
|
)
|
|
|
|
|
|
def _load_map_reduce_documents_chain(
|
|
config: dict, **kwargs: Any
|
|
) -> MapReduceDocumentsChain:
|
|
if "llm_chain" in config:
|
|
llm_chain_config = config.pop("llm_chain")
|
|
llm_chain = load_chain_from_config(llm_chain_config)
|
|
elif "llm_chain_path" in config:
|
|
llm_chain = load_chain(config.pop("llm_chain_path"))
|
|
else:
|
|
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
|
|
|
|
if not isinstance(llm_chain, LLMChain):
|
|
raise ValueError(f"Expected LLMChain, got {llm_chain}")
|
|
|
|
if "combine_document_chain" in config:
|
|
combine_document_chain_config = config.pop("combine_document_chain")
|
|
combine_document_chain = load_chain_from_config(combine_document_chain_config)
|
|
elif "combine_document_chain_path" in config:
|
|
combine_document_chain = load_chain(config.pop("combine_document_chain_path"))
|
|
else:
|
|
raise ValueError(
|
|
"One of `combine_document_chain` or "
|
|
"`combine_document_chain_path` must be present."
|
|
)
|
|
if "collapse_document_chain" in config:
|
|
collapse_document_chain_config = config.pop("collapse_document_chain")
|
|
if collapse_document_chain_config is None:
|
|
collapse_document_chain = None
|
|
else:
|
|
collapse_document_chain = load_chain_from_config(
|
|
collapse_document_chain_config
|
|
)
|
|
elif "collapse_document_chain_path" in config:
|
|
collapse_document_chain = load_chain(config.pop("collapse_document_chain_path"))
|
|
return MapReduceDocumentsChain(
|
|
llm_chain=llm_chain,
|
|
combine_document_chain=combine_document_chain,
|
|
collapse_document_chain=collapse_document_chain,
|
|
**config,
|
|
)
|
|
|
|
|
|
def _load_llm_bash_chain(config: dict, **kwargs: Any) -> LLMBashChain:
|
|
if "llm" in config:
|
|
llm_config = config.pop("llm")
|
|
llm = load_llm_from_config(llm_config)
|
|
elif "llm_path" in config:
|
|
llm = load_llm(config.pop("llm_path"))
|
|
else:
|
|
raise ValueError("One of `llm` or `llm_path` must be present.")
|
|
if "prompt" in config:
|
|
prompt_config = config.pop("prompt")
|
|
prompt = load_prompt_from_config(prompt_config)
|
|
elif "prompt_path" in config:
|
|
prompt = load_prompt(config.pop("prompt_path"))
|
|
return LLMBashChain(llm=llm, prompt=prompt, **config)
|
|
|
|
|
|
def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain:
|
|
if "llm" in config:
|
|
llm_config = config.pop("llm")
|
|
llm = load_llm_from_config(llm_config)
|
|
elif "llm_path" in config:
|
|
llm = load_llm(config.pop("llm_path"))
|
|
else:
|
|
raise ValueError("One of `llm` or `llm_path` must be present.")
|
|
if "create_draft_answer_prompt" in config:
|
|
create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt")
|
|
create_draft_answer_prompt = load_prompt_from_config(
|
|
create_draft_answer_prompt_config
|
|
)
|
|
elif "create_draft_answer_prompt_path" in config:
|
|
create_draft_answer_prompt = load_prompt(
|
|
config.pop("create_draft_answer_prompt_path")
|
|
)
|
|
if "list_assertions_prompt" in config:
|
|
list_assertions_prompt_config = config.pop("list_assertions_prompt")
|
|
list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config)
|
|
elif "list_assertions_prompt_path" in config:
|
|
list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path"))
|
|
if "check_assertions_prompt" in config:
|
|
check_assertions_prompt_config = config.pop("check_assertions_prompt")
|
|
check_assertions_prompt = load_prompt_from_config(
|
|
check_assertions_prompt_config
|
|
)
|
|
elif "check_assertions_prompt_path" in config:
|
|
check_assertions_prompt = load_prompt(
|
|
config.pop("check_assertions_prompt_path")
|
|
)
|
|
if "revised_answer_prompt" in config:
|
|
revised_answer_prompt_config = config.pop("revised_answer_prompt")
|
|
revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config)
|
|
elif "revised_answer_prompt_path" in config:
|
|
revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path"))
|
|
return LLMCheckerChain(
|
|
llm=llm,
|
|
create_draft_answer_prompt=create_draft_answer_prompt,
|
|
list_assertions_prompt=list_assertions_prompt,
|
|
check_assertions_prompt=check_assertions_prompt,
|
|
revised_answer_prompt=revised_answer_prompt,
|
|
**config,
|
|
)
|
|
|
|
|
|
def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain:
|
|
if "llm" in config:
|
|
llm_config = config.pop("llm")
|
|
llm = load_llm_from_config(llm_config)
|
|
elif "llm_path" in config:
|
|
llm = load_llm(config.pop("llm_path"))
|
|
else:
|
|
raise ValueError("One of `llm` or `llm_path` must be present.")
|
|
if "prompt" in config:
|
|
prompt_config = config.pop("prompt")
|
|
prompt = load_prompt_from_config(prompt_config)
|
|
elif "prompt_path" in config:
|
|
prompt = load_prompt(config.pop("prompt_path"))
|
|
return LLMMathChain(llm=llm, prompt=prompt, **config)
|
|
|
|
|
|
def _load_map_rerank_documents_chain(
|
|
config: dict, **kwargs: Any
|
|
) -> MapRerankDocumentsChain:
|
|
if "llm_chain" in config:
|
|
llm_chain_config = config.pop("llm_chain")
|
|
llm_chain = load_chain_from_config(llm_chain_config)
|
|
elif "llm_chain_path" in config:
|
|
llm_chain = load_chain(config.pop("llm_chain_path"))
|
|
else:
|
|
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
|
|
return MapRerankDocumentsChain(llm_chain=llm_chain, **config)
|
|
|
|
|
|
def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain:
|
|
if "llm" in config:
|
|
llm_config = config.pop("llm")
|
|
llm = load_llm_from_config(llm_config)
|
|
elif "llm_path" in config:
|
|
llm = load_llm(config.pop("llm_path"))
|
|
else:
|
|
raise ValueError("One of `llm` or `llm_path` must be present.")
|
|
if "prompt" in config:
|
|
prompt_config = config.pop("prompt")
|
|
prompt = load_prompt_from_config(prompt_config)
|
|
elif "prompt_path" in config:
|
|
prompt = load_prompt(config.pop("prompt_path"))
|
|
else:
|
|
raise ValueError("One of `prompt` or `prompt_path` must be present.")
|
|
return PALChain(llm=llm, prompt=prompt, **config)
|
|
|
|
|
|
def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain:
|
|
if "initial_llm_chain" in config:
|
|
initial_llm_chain_config = config.pop("initial_llm_chain")
|
|
initial_llm_chain = load_chain_from_config(initial_llm_chain_config)
|
|
elif "initial_llm_chain_path" in config:
|
|
initial_llm_chain = load_chain(config.pop("initial_llm_chain_path"))
|
|
else:
|
|
raise ValueError(
|
|
"One of `initial_llm_chain` or `initial_llm_chain_config` must be present."
|
|
)
|
|
if "refine_llm_chain" in config:
|
|
refine_llm_chain_config = config.pop("refine_llm_chain")
|
|
refine_llm_chain = load_chain_from_config(refine_llm_chain_config)
|
|
elif "refine_llm_chain_path" in config:
|
|
refine_llm_chain = load_chain(config.pop("refine_llm_chain_path"))
|
|
else:
|
|
raise ValueError(
|
|
"One of `refine_llm_chain` or `refine_llm_chain_config` must be present."
|
|
)
|
|
if "document_prompt" in config:
|
|
prompt_config = config.pop("document_prompt")
|
|
document_prompt = load_prompt_from_config(prompt_config)
|
|
elif "document_prompt_path" in config:
|
|
document_prompt = load_prompt(config.pop("document_prompt_path"))
|
|
return RefineDocumentsChain(
|
|
initial_llm_chain=initial_llm_chain,
|
|
refine_llm_chain=refine_llm_chain,
|
|
document_prompt=document_prompt,
|
|
**config,
|
|
)
|
|
|
|
|
|
def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain:
|
|
if "combine_documents_chain" in config:
|
|
combine_documents_chain_config = config.pop("combine_documents_chain")
|
|
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
|
|
elif "combine_documents_chain_path" in config:
|
|
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
|
|
else:
|
|
raise ValueError(
|
|
"One of `combine_documents_chain` or "
|
|
"`combine_documents_chain_path` must be present."
|
|
)
|
|
return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config)
|
|
|
|
|
|
def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain:
|
|
if "database" in kwargs:
|
|
database = kwargs.pop("database")
|
|
else:
|
|
raise ValueError("`database` must be present.")
|
|
if "llm" in config:
|
|
llm_config = config.pop("llm")
|
|
llm = load_llm_from_config(llm_config)
|
|
elif "llm_path" in config:
|
|
llm = load_llm(config.pop("llm_path"))
|
|
else:
|
|
raise ValueError("One of `llm` or `llm_path` must be present.")
|
|
if "prompt" in config:
|
|
prompt_config = config.pop("prompt")
|
|
prompt = load_prompt_from_config(prompt_config)
|
|
else:
|
|
prompt = None
|
|
return SQLDatabaseChain.from_llm(llm, database, prompt=prompt, **config)
|
|
|
|
|
|
def _load_vector_db_qa_with_sources_chain(
|
|
config: dict, **kwargs: Any
|
|
) -> VectorDBQAWithSourcesChain:
|
|
if "vectorstore" in kwargs:
|
|
vectorstore = kwargs.pop("vectorstore")
|
|
else:
|
|
raise ValueError("`vectorstore` must be present.")
|
|
if "combine_documents_chain" in config:
|
|
combine_documents_chain_config = config.pop("combine_documents_chain")
|
|
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
|
|
elif "combine_documents_chain_path" in config:
|
|
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
|
|
else:
|
|
raise ValueError(
|
|
"One of `combine_documents_chain` or "
|
|
"`combine_documents_chain_path` must be present."
|
|
)
|
|
return VectorDBQAWithSourcesChain(
|
|
combine_documents_chain=combine_documents_chain,
|
|
vectorstore=vectorstore,
|
|
**config,
|
|
)
|
|
|
|
|
|
def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA:
|
|
if "vectorstore" in kwargs:
|
|
vectorstore = kwargs.pop("vectorstore")
|
|
else:
|
|
raise ValueError("`vectorstore` must be present.")
|
|
if "combine_documents_chain" in config:
|
|
combine_documents_chain_config = config.pop("combine_documents_chain")
|
|
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
|
|
elif "combine_documents_chain_path" in config:
|
|
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
|
|
else:
|
|
raise ValueError(
|
|
"One of `combine_documents_chain` or "
|
|
"`combine_documents_chain_path` must be present."
|
|
)
|
|
return VectorDBQA(
|
|
combine_documents_chain=combine_documents_chain,
|
|
vectorstore=vectorstore,
|
|
**config,
|
|
)
|
|
|
|
|
|
def _load_api_chain(config: dict, **kwargs: Any) -> APIChain:
|
|
if "api_request_chain" in config:
|
|
api_request_chain_config = config.pop("api_request_chain")
|
|
api_request_chain = load_chain_from_config(api_request_chain_config)
|
|
elif "api_request_chain_path" in config:
|
|
api_request_chain = load_chain(config.pop("api_request_chain_path"))
|
|
else:
|
|
raise ValueError(
|
|
"One of `api_request_chain` or `api_request_chain_path` must be present."
|
|
)
|
|
if "api_answer_chain" in config:
|
|
api_answer_chain_config = config.pop("api_answer_chain")
|
|
api_answer_chain = load_chain_from_config(api_answer_chain_config)
|
|
elif "api_answer_chain_path" in config:
|
|
api_answer_chain = load_chain(config.pop("api_answer_chain_path"))
|
|
else:
|
|
raise ValueError(
|
|
"One of `api_answer_chain` or `api_answer_chain_path` must be present."
|
|
)
|
|
if "requests_wrapper" in kwargs:
|
|
requests_wrapper = kwargs.pop("requests_wrapper")
|
|
else:
|
|
raise ValueError("`requests_wrapper` must be present.")
|
|
return APIChain(
|
|
api_request_chain=api_request_chain,
|
|
api_answer_chain=api_answer_chain,
|
|
requests_wrapper=requests_wrapper,
|
|
**config,
|
|
)
|
|
|
|
|
|
def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain:
|
|
if "llm_chain" in config:
|
|
llm_chain_config = config.pop("llm_chain")
|
|
llm_chain = load_chain_from_config(llm_chain_config)
|
|
elif "llm_chain_path" in config:
|
|
llm_chain = load_chain(config.pop("llm_chain_path"))
|
|
else:
|
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
|
|
if "requests_wrapper" in kwargs:
|
|
requests_wrapper = kwargs.pop("requests_wrapper")
|
|
return LLMRequestsChain(
|
|
llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config
|
|
)
|
|
else:
|
|
return LLMRequestsChain(llm_chain=llm_chain, **config)
|
|
|
|
|
|
type_to_loader_dict = {
|
|
"api_chain": _load_api_chain,
|
|
"hyde_chain": _load_hyde_chain,
|
|
"llm_chain": _load_llm_chain,
|
|
"llm_bash_chain": _load_llm_bash_chain,
|
|
"llm_checker_chain": _load_llm_checker_chain,
|
|
"llm_math_chain": _load_llm_math_chain,
|
|
"llm_requests_chain": _load_llm_requests_chain,
|
|
"pal_chain": _load_pal_chain,
|
|
"qa_with_sources_chain": _load_qa_with_sources_chain,
|
|
"stuff_documents_chain": _load_stuff_documents_chain,
|
|
"map_reduce_documents_chain": _load_map_reduce_documents_chain,
|
|
"map_rerank_documents_chain": _load_map_rerank_documents_chain,
|
|
"refine_documents_chain": _load_refine_documents_chain,
|
|
"sql_database_chain": _load_sql_database_chain,
|
|
"vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain,
|
|
"vector_db_qa": _load_vector_db_qa,
|
|
}
|
|
|
|
|
|
def load_chain_from_config(config: dict, **kwargs: Any) -> Chain:
|
|
"""Load chain from Config Dict."""
|
|
if "_type" not in config:
|
|
raise ValueError("Must specify a chain Type in config")
|
|
config_type = config.pop("_type")
|
|
|
|
if config_type not in type_to_loader_dict:
|
|
raise ValueError(f"Loading {config_type} chain not supported")
|
|
|
|
chain_loader = type_to_loader_dict[config_type]
|
|
return chain_loader(config, **kwargs)
|
|
|
|
|
|
def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain:
|
|
"""Unified method for loading a chain from LangChainHub or local fs."""
|
|
if hub_result := try_load_from_hub(
|
|
path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs
|
|
):
|
|
return hub_result
|
|
else:
|
|
return _load_chain_from_file(path, **kwargs)
|
|
|
|
|
|
def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain:
|
|
"""Load chain from file."""
|
|
# Convert file to Path object.
|
|
if isinstance(file, str):
|
|
file_path = Path(file)
|
|
else:
|
|
file_path = file
|
|
# Load from either json or yaml.
|
|
if file_path.suffix == ".json":
|
|
with open(file_path) as f:
|
|
config = json.load(f)
|
|
elif file_path.suffix == ".yaml":
|
|
with open(file_path, "r") as f:
|
|
config = yaml.safe_load(f)
|
|
else:
|
|
raise ValueError("File type must be json or yaml")
|
|
|
|
# Override default 'verbose' and 'memory' for the chain
|
|
if "verbose" in kwargs:
|
|
config["verbose"] = kwargs.pop("verbose")
|
|
if "memory" in kwargs:
|
|
config["memory"] = kwargs.pop("memory")
|
|
|
|
# Load the chain from the config now.
|
|
return load_chain_from_config(config, **kwargs)
|