mirror of
https://github.com/hwchase17/langchain
synced 2024-11-16 06:13:16 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
363 lines
13 KiB
Python
363 lines
13 KiB
Python
import hashlib
|
|
import io
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Mapping, Optional, Sequence, Union
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
|
|
TABLE_NAME = "{http://www.w3.org/1999/xhtml}table"
|
|
|
|
XPATH_KEY = "xpath"
|
|
ID_KEY = "id"
|
|
DOCUMENT_SOURCE_KEY = "source"
|
|
DOCUMENT_NAME_KEY = "name"
|
|
STRUCTURE_KEY = "structure"
|
|
TAG_KEY = "tag"
|
|
PROJECTS_KEY = "projects"
|
|
|
|
DEFAULT_API_ENDPOINT = "https://api.docugami.com/v1preview1"
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class DocugamiLoader(BaseLoader, BaseModel):
|
|
"""Load from `Docugami`.
|
|
|
|
To use, you should have the ``dgml-utils`` python package installed.
|
|
"""
|
|
|
|
api: str = DEFAULT_API_ENDPOINT
|
|
"""The Docugami API endpoint to use."""
|
|
|
|
access_token: Optional[str] = os.environ.get("DOCUGAMI_API_KEY")
|
|
"""The Docugami API access token to use."""
|
|
|
|
max_text_length = 4096
|
|
"""Max length of chunk text returned."""
|
|
|
|
min_text_length: int = 32
|
|
"""Threshold under which chunks are appended to next to avoid over-chunking."""
|
|
|
|
max_metadata_length = 512
|
|
"""Max length of metadata text returned."""
|
|
|
|
include_xml_tags: bool = False
|
|
"""Set to true for XML tags in chunk output text."""
|
|
|
|
parent_hierarchy_levels: int = 0
|
|
"""Set appropriately to get parent chunks using the chunk hierarchy."""
|
|
|
|
parent_id_key: str = "doc_id"
|
|
"""Metadata key for parent doc ID."""
|
|
|
|
sub_chunk_tables: bool = False
|
|
"""Set to True to return sub-chunks within tables."""
|
|
|
|
whitespace_normalize_text: bool = True
|
|
"""Set to False if you want to full whitespace formatting in the original
|
|
XML doc, including indentation."""
|
|
|
|
docset_id: Optional[str]
|
|
"""The Docugami API docset ID to use."""
|
|
|
|
document_ids: Optional[Sequence[str]]
|
|
"""The Docugami API document IDs to use."""
|
|
|
|
file_paths: Optional[Sequence[Union[Path, str]]]
|
|
"""The local file paths to use."""
|
|
|
|
include_project_metadata_in_doc_metadata: bool = True
|
|
"""Set to True if you want to include the project metadata in the doc metadata."""
|
|
|
|
@root_validator
|
|
def validate_local_or_remote(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Validate that either local file paths are given, or remote API docset ID.
|
|
|
|
Args:
|
|
values: The values to validate.
|
|
|
|
Returns:
|
|
The validated values.
|
|
"""
|
|
if values.get("file_paths") and values.get("docset_id"):
|
|
raise ValueError("Cannot specify both file_paths and remote API docset_id")
|
|
|
|
if not values.get("file_paths") and not values.get("docset_id"):
|
|
raise ValueError("Must specify either file_paths or remote API docset_id")
|
|
|
|
if values.get("docset_id") and not values.get("access_token"):
|
|
raise ValueError("Must specify access token if using remote API docset_id")
|
|
|
|
return values
|
|
|
|
def _parse_dgml(
|
|
self,
|
|
content: bytes,
|
|
document_name: Optional[str] = None,
|
|
additional_doc_metadata: Optional[Mapping] = None,
|
|
) -> List[Document]:
|
|
"""Parse a single DGML document into a list of Documents."""
|
|
try:
|
|
from lxml import etree
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import lxml python package. "
|
|
"Please install it with `pip install lxml`."
|
|
)
|
|
|
|
try:
|
|
from dgml_utils.models import Chunk
|
|
from dgml_utils.segmentation import get_chunks
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import from dgml-utils python package. "
|
|
"Please install it with `pip install dgml-utils`."
|
|
)
|
|
|
|
def _build_framework_chunk(dg_chunk: Chunk) -> Document:
|
|
# Stable IDs for chunks with the same text.
|
|
_hashed_id = hashlib.md5(dg_chunk.text.encode()).hexdigest()
|
|
metadata = {
|
|
XPATH_KEY: dg_chunk.xpath,
|
|
ID_KEY: _hashed_id,
|
|
DOCUMENT_NAME_KEY: document_name,
|
|
DOCUMENT_SOURCE_KEY: document_name,
|
|
STRUCTURE_KEY: dg_chunk.structure,
|
|
TAG_KEY: dg_chunk.tag,
|
|
}
|
|
|
|
text = dg_chunk.text
|
|
if additional_doc_metadata:
|
|
if self.include_project_metadata_in_doc_metadata:
|
|
metadata.update(additional_doc_metadata)
|
|
|
|
return Document(
|
|
page_content=text[: self.max_text_length],
|
|
metadata=metadata,
|
|
)
|
|
|
|
# Parse the tree and return chunks
|
|
tree = etree.parse(io.BytesIO(content))
|
|
root = tree.getroot()
|
|
|
|
dg_chunks = get_chunks(
|
|
root,
|
|
min_text_length=self.min_text_length,
|
|
max_text_length=self.max_text_length,
|
|
whitespace_normalize_text=self.whitespace_normalize_text,
|
|
sub_chunk_tables=self.sub_chunk_tables,
|
|
include_xml_tags=self.include_xml_tags,
|
|
parent_hierarchy_levels=self.parent_hierarchy_levels,
|
|
)
|
|
|
|
framework_chunks: Dict[str, Document] = {}
|
|
for dg_chunk in dg_chunks:
|
|
framework_chunk = _build_framework_chunk(dg_chunk)
|
|
chunk_id = framework_chunk.metadata.get(ID_KEY)
|
|
if chunk_id:
|
|
framework_chunks[chunk_id] = framework_chunk
|
|
if dg_chunk.parent:
|
|
framework_parent_chunk = _build_framework_chunk(dg_chunk.parent)
|
|
parent_id = framework_parent_chunk.metadata.get(ID_KEY)
|
|
if parent_id and framework_parent_chunk.page_content:
|
|
framework_chunk.metadata[self.parent_id_key] = parent_id
|
|
framework_chunks[parent_id] = framework_parent_chunk
|
|
|
|
return list(framework_chunks.values())
|
|
|
|
def _document_details_for_docset_id(self, docset_id: str) -> List[Dict]:
|
|
"""Gets all document details for the given docset ID"""
|
|
url = f"{self.api}/docsets/{docset_id}/documents"
|
|
all_documents = []
|
|
|
|
while url:
|
|
response = requests.get(
|
|
url,
|
|
headers={"Authorization": f"Bearer {self.access_token}"},
|
|
)
|
|
if response.ok:
|
|
data = response.json()
|
|
all_documents.extend(data["documents"])
|
|
url = data.get("next", None)
|
|
else:
|
|
raise Exception(
|
|
f"Failed to download {url} (status: {response.status_code})"
|
|
)
|
|
|
|
return all_documents
|
|
|
|
def _project_details_for_docset_id(self, docset_id: str) -> List[Dict]:
|
|
"""Gets all project details for the given docset ID"""
|
|
url = f"{self.api}/projects?docset.id={docset_id}"
|
|
all_projects = []
|
|
|
|
while url:
|
|
response = requests.request(
|
|
"GET",
|
|
url,
|
|
headers={"Authorization": f"Bearer {self.access_token}"},
|
|
data={},
|
|
)
|
|
if response.ok:
|
|
data = response.json()
|
|
all_projects.extend(data["projects"])
|
|
url = data.get("next", None)
|
|
else:
|
|
raise Exception(
|
|
f"Failed to download {url} (status: {response.status_code})"
|
|
)
|
|
|
|
return all_projects
|
|
|
|
def _metadata_for_project(self, project: Dict) -> Dict:
|
|
"""Gets project metadata for all files"""
|
|
project_id = project.get(ID_KEY)
|
|
|
|
url = f"{self.api}/projects/{project_id}/artifacts/latest"
|
|
all_artifacts = []
|
|
|
|
per_file_metadata: Dict = {}
|
|
while url:
|
|
response = requests.request(
|
|
"GET",
|
|
url,
|
|
headers={"Authorization": f"Bearer {self.access_token}"},
|
|
data={},
|
|
)
|
|
if response.ok:
|
|
data = response.json()
|
|
all_artifacts.extend(data["artifacts"])
|
|
url = data.get("next", None)
|
|
elif response.status_code == 404:
|
|
# Not found is ok, just means no published projects
|
|
return per_file_metadata
|
|
else:
|
|
raise Exception(
|
|
f"Failed to download {url} (status: {response.status_code})"
|
|
)
|
|
|
|
for artifact in all_artifacts:
|
|
artifact_name = artifact.get("name")
|
|
artifact_url = artifact.get("url")
|
|
artifact_doc = artifact.get("document")
|
|
|
|
if artifact_name == "report-values.xml" and artifact_url and artifact_doc:
|
|
doc_id = artifact_doc[ID_KEY]
|
|
metadata: Dict = {}
|
|
|
|
# The evaluated XML for each document is named after the project
|
|
response = requests.request(
|
|
"GET",
|
|
f"{artifact_url}/content",
|
|
headers={"Authorization": f"Bearer {self.access_token}"},
|
|
data={},
|
|
)
|
|
|
|
if response.ok:
|
|
try:
|
|
from lxml import etree
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import lxml python package. "
|
|
"Please install it with `pip install lxml`."
|
|
)
|
|
artifact_tree = etree.parse(io.BytesIO(response.content))
|
|
artifact_root = artifact_tree.getroot()
|
|
ns = artifact_root.nsmap
|
|
entries = artifact_root.xpath("//pr:Entry", namespaces=ns)
|
|
for entry in entries:
|
|
heading = entry.xpath("./pr:Heading", namespaces=ns)[0].text
|
|
value = " ".join(
|
|
entry.xpath("./pr:Value", namespaces=ns)[0].itertext()
|
|
).strip()
|
|
metadata[heading] = value[: self.max_metadata_length]
|
|
per_file_metadata[doc_id] = metadata
|
|
else:
|
|
raise Exception(
|
|
f"Failed to download {artifact_url}/content "
|
|
+ "(status: {response.status_code})"
|
|
)
|
|
|
|
return per_file_metadata
|
|
|
|
def _load_chunks_for_document(
|
|
self,
|
|
document_id: str,
|
|
docset_id: str,
|
|
document_name: Optional[str] = None,
|
|
additional_metadata: Optional[Mapping] = None,
|
|
) -> List[Document]:
|
|
"""Load chunks for a document."""
|
|
url = f"{self.api}/docsets/{docset_id}/documents/{document_id}/dgml"
|
|
|
|
response = requests.request(
|
|
"GET",
|
|
url,
|
|
headers={"Authorization": f"Bearer {self.access_token}"},
|
|
data={},
|
|
)
|
|
|
|
if response.ok:
|
|
return self._parse_dgml(
|
|
content=response.content,
|
|
document_name=document_name,
|
|
additional_doc_metadata=additional_metadata,
|
|
)
|
|
else:
|
|
raise Exception(
|
|
f"Failed to download {url} (status: {response.status_code})"
|
|
)
|
|
|
|
def load(self) -> List[Document]:
|
|
"""Load documents."""
|
|
chunks: List[Document] = []
|
|
|
|
if self.access_token and self.docset_id:
|
|
# Remote mode
|
|
_document_details = self._document_details_for_docset_id(self.docset_id)
|
|
if self.document_ids:
|
|
_document_details = [
|
|
d for d in _document_details if d[ID_KEY] in self.document_ids
|
|
]
|
|
|
|
_project_details = self._project_details_for_docset_id(self.docset_id)
|
|
combined_project_metadata: Dict[str, Dict] = {}
|
|
if _project_details and self.include_project_metadata_in_doc_metadata:
|
|
# If there are any projects for this docset and the caller requested
|
|
# project metadata, load it.
|
|
for project in _project_details:
|
|
metadata = self._metadata_for_project(project)
|
|
for file_id in metadata:
|
|
if file_id not in combined_project_metadata:
|
|
combined_project_metadata[file_id] = metadata[file_id]
|
|
else:
|
|
combined_project_metadata[file_id].update(metadata[file_id])
|
|
|
|
for doc in _document_details:
|
|
doc_id = doc[ID_KEY]
|
|
doc_name = doc.get(DOCUMENT_NAME_KEY)
|
|
doc_metadata = combined_project_metadata.get(doc_id)
|
|
chunks += self._load_chunks_for_document(
|
|
document_id=doc_id,
|
|
docset_id=self.docset_id,
|
|
document_name=doc_name,
|
|
additional_metadata=doc_metadata,
|
|
)
|
|
elif self.file_paths:
|
|
# Local mode (for integration testing, or pre-downloaded XML)
|
|
for path in self.file_paths:
|
|
path = Path(path)
|
|
with open(path, "rb") as file:
|
|
chunks += self._parse_dgml(
|
|
content=file.read(),
|
|
document_name=path.name,
|
|
)
|
|
|
|
return chunks
|