mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
25fbe356b4
This PR upgrades community to a recent version of mypy. It inserts type: ignore on all existing failures.
575 lines
22 KiB
Python
575 lines
22 KiB
Python
import logging
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Type,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
FunctionMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
JsonOutputKeyToolsParser,
|
|
PydanticToolsParser,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def convert_message_to_dict(message: BaseMessage) -> dict:
|
|
"""Convert a message to a dictionary that can be passed to the API."""
|
|
message_dict: Dict[str, Any]
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
if "function_call" in message.additional_kwargs:
|
|
message_dict["function_call"] = message.additional_kwargs["function_call"]
|
|
# If function call only, content is None not empty string
|
|
if message_dict["content"] == "":
|
|
message_dict["content"] = None
|
|
elif isinstance(message, FunctionMessage):
|
|
message_dict = {
|
|
"role": "function",
|
|
"content": message.content,
|
|
"name": message.name,
|
|
}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
return message_dict
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> AIMessage:
|
|
content = _dict.get("result", "") or ""
|
|
additional_kwargs: Mapping[str, Any] = {}
|
|
if _dict.get("function_call"):
|
|
additional_kwargs = {"function_call": dict(_dict["function_call"])}
|
|
if "thoughts" in additional_kwargs["function_call"]:
|
|
# align to api sample, which affects the llm function_call output
|
|
additional_kwargs["function_call"].pop("thoughts")
|
|
|
|
additional_kwargs = {**_dict.get("body", {}), **additional_kwargs}
|
|
return AIMessage(
|
|
content=content,
|
|
additional_kwargs=dict(
|
|
finish_reason=additional_kwargs.get("finish_reason", ""),
|
|
request_id=additional_kwargs["id"],
|
|
object=additional_kwargs.get("object", ""),
|
|
search_info=additional_kwargs.get("search_info", []),
|
|
function_call=additional_kwargs.get("function_call", {}),
|
|
tool_calls=[
|
|
{
|
|
"type": "function",
|
|
"function": additional_kwargs.get("function_call", {}),
|
|
}
|
|
],
|
|
),
|
|
)
|
|
|
|
|
|
class QianfanChatEndpoint(BaseChatModel):
|
|
"""Baidu Qianfan chat models.
|
|
|
|
To use, you should have the ``qianfan`` python package installed, and
|
|
the environment variable ``qianfan_ak`` and ``qianfan_sk`` set with your
|
|
API key and Secret Key.
|
|
|
|
ak, sk are required parameters
|
|
which you could get from https://cloud.baidu.com/product/wenxinworkshop
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import QianfanChatEndpoint
|
|
qianfan_chat = QianfanChatEndpoint(model="ERNIE-Bot",
|
|
endpoint="your_endpoint", qianfan_ak="your_ak", qianfan_sk="your_sk")
|
|
"""
|
|
|
|
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""init kwargs for qianfan client init, such as `query_per_second` which is
|
|
associated with qianfan resource object to limit QPS"""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""extra params for model invoke using with `do`."""
|
|
|
|
client: Any
|
|
|
|
qianfan_ak: Optional[SecretStr] = None
|
|
qianfan_sk: Optional[SecretStr] = None
|
|
|
|
streaming: Optional[bool] = False
|
|
"""Whether to stream the results or not."""
|
|
|
|
request_timeout: Optional[int] = Field(60, alias="timeout")
|
|
"""request timeout for chat http requests"""
|
|
|
|
top_p: Optional[float] = 0.8
|
|
temperature: Optional[float] = 0.95
|
|
penalty_score: Optional[float] = 1
|
|
"""Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo.
|
|
In the case of other model, passing these params will not affect the result.
|
|
"""
|
|
|
|
model: str = "ERNIE-Bot-turbo"
|
|
"""Model name.
|
|
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
|
|
|
|
preset models are mapping to an endpoint.
|
|
`model` will be ignored if `endpoint` is set.
|
|
Default is ERNIE-Bot-turbo.
|
|
"""
|
|
|
|
endpoint: Optional[str] = None
|
|
"""Endpoint of the Qianfan LLM, required if custom model used."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
values["qianfan_ak"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"qianfan_ak",
|
|
"QIANFAN_AK",
|
|
default="",
|
|
)
|
|
)
|
|
values["qianfan_sk"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"qianfan_sk",
|
|
"QIANFAN_SK",
|
|
default="",
|
|
)
|
|
)
|
|
params = {
|
|
**values.get("init_kwargs", {}),
|
|
"model": values["model"],
|
|
"stream": values["streaming"],
|
|
}
|
|
if values["qianfan_ak"].get_secret_value() != "":
|
|
params["ak"] = values["qianfan_ak"].get_secret_value()
|
|
if values["qianfan_sk"].get_secret_value() != "":
|
|
params["sk"] = values["qianfan_sk"].get_secret_value()
|
|
if values["endpoint"] is not None and values["endpoint"] != "":
|
|
params["endpoint"] = values["endpoint"]
|
|
try:
|
|
import qianfan
|
|
|
|
values["client"] = qianfan.ChatCompletion(**params)
|
|
except ImportError:
|
|
raise ImportError(
|
|
"qianfan package not found, please install it with "
|
|
"`pip install qianfan`"
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
return {
|
|
**{"endpoint": self.endpoint, "model": self.model},
|
|
**super()._identifying_params,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat_model."""
|
|
return "baidu-qianfan-chat"
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling Qianfan API."""
|
|
normal_params = {
|
|
"model": self.model,
|
|
"endpoint": self.endpoint,
|
|
"stream": self.streaming,
|
|
"request_timeout": self.request_timeout,
|
|
"top_p": self.top_p,
|
|
"temperature": self.temperature,
|
|
"penalty_score": self.penalty_score,
|
|
}
|
|
|
|
return {**normal_params, **self.model_kwargs}
|
|
|
|
def _convert_prompt_msg_params(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
**kwargs: Any,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Converts a list of messages into a dictionary containing the message content
|
|
and default parameters.
|
|
|
|
Args:
|
|
messages (List[BaseMessage]): The list of messages.
|
|
**kwargs (Any): Optional arguments to add additional parameters to the
|
|
resulting dictionary.
|
|
|
|
Returns:
|
|
Dict[str, Any]: A dictionary containing the message content and default
|
|
parameters.
|
|
|
|
"""
|
|
messages_dict: Dict[str, Any] = {
|
|
"messages": [
|
|
convert_message_to_dict(m)
|
|
for m in messages
|
|
if not isinstance(m, SystemMessage)
|
|
]
|
|
}
|
|
for i in [i for i, m in enumerate(messages) if isinstance(m, SystemMessage)]:
|
|
if "system" not in messages_dict:
|
|
messages_dict["system"] = ""
|
|
messages_dict["system"] += cast(str, messages[i].content) + "\n"
|
|
|
|
return {
|
|
**messages_dict,
|
|
**self._default_params,
|
|
**kwargs,
|
|
}
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
"""Call out to an qianfan models endpoint for each generation with a prompt.
|
|
Args:
|
|
messages: The messages to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
response = qianfan_model.invoke("Tell me a joke.")
|
|
"""
|
|
if self.streaming:
|
|
completion = ""
|
|
token_usage = {}
|
|
chat_generation_info: Dict = {}
|
|
for chunk in self._stream(messages, stop, run_manager, **kwargs):
|
|
chat_generation_info = (
|
|
chunk.generation_info
|
|
if chunk.generation_info is not None
|
|
else chat_generation_info
|
|
)
|
|
completion += chunk.text
|
|
lc_msg = AIMessage(content=completion, additional_kwargs={})
|
|
gen = ChatGeneration(
|
|
message=lc_msg,
|
|
generation_info=dict(finish_reason="stop"),
|
|
)
|
|
return ChatResult(
|
|
generations=[gen],
|
|
llm_output={
|
|
"token_usage": chat_generation_info.get("usage", {}),
|
|
"model_name": self.model,
|
|
},
|
|
)
|
|
params = self._convert_prompt_msg_params(messages, **kwargs)
|
|
params["stop"] = stop
|
|
response_payload = self.client.do(**params)
|
|
lc_msg = _convert_dict_to_message(response_payload)
|
|
gen = ChatGeneration(
|
|
message=lc_msg,
|
|
generation_info={
|
|
"finish_reason": "stop",
|
|
**response_payload.get("body", {}),
|
|
},
|
|
)
|
|
token_usage = response_payload.get("usage", {})
|
|
llm_output = {"token_usage": token_usage, "model_name": self.model}
|
|
return ChatResult(generations=[gen], llm_output=llm_output)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
completion = ""
|
|
token_usage = {}
|
|
chat_generation_info: Dict = {}
|
|
async for chunk in self._astream(messages, stop, run_manager, **kwargs):
|
|
chat_generation_info = (
|
|
chunk.generation_info
|
|
if chunk.generation_info is not None
|
|
else chat_generation_info
|
|
)
|
|
completion += chunk.text
|
|
|
|
lc_msg = AIMessage(content=completion, additional_kwargs={})
|
|
gen = ChatGeneration(
|
|
message=lc_msg,
|
|
generation_info=dict(finish_reason="stop"),
|
|
)
|
|
return ChatResult(
|
|
generations=[gen],
|
|
llm_output={
|
|
"token_usage": chat_generation_info.get("usage", {}),
|
|
"model_name": self.model,
|
|
},
|
|
)
|
|
params = self._convert_prompt_msg_params(messages, **kwargs)
|
|
params["stop"] = stop
|
|
response_payload = await self.client.ado(**params)
|
|
lc_msg = _convert_dict_to_message(response_payload)
|
|
generations = []
|
|
gen = ChatGeneration(
|
|
message=lc_msg,
|
|
generation_info={
|
|
"finish_reason": "stop",
|
|
**response_payload.get("body", {}),
|
|
},
|
|
)
|
|
generations.append(gen)
|
|
token_usage = response_payload.get("usage", {})
|
|
llm_output = {"token_usage": token_usage, "model_name": self.model}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
params = self._convert_prompt_msg_params(messages, **kwargs)
|
|
params["stop"] = stop
|
|
params["stream"] = True
|
|
for res in self.client.do(**params):
|
|
if res:
|
|
msg = _convert_dict_to_message(res)
|
|
additional_kwargs = msg.additional_kwargs.get("function_call", {})
|
|
chunk = ChatGenerationChunk(
|
|
text=res["result"],
|
|
message=AIMessageChunk( # type: ignore[call-arg]
|
|
content=msg.content,
|
|
role="assistant",
|
|
additional_kwargs=additional_kwargs,
|
|
),
|
|
generation_info=msg.additional_kwargs,
|
|
)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
params = self._convert_prompt_msg_params(messages, **kwargs)
|
|
params["stop"] = stop
|
|
params["stream"] = True
|
|
async for res in await self.client.ado(**params):
|
|
if res:
|
|
msg = _convert_dict_to_message(res)
|
|
additional_kwargs = msg.additional_kwargs.get("function_call", {})
|
|
chunk = ChatGenerationChunk(
|
|
text=res["result"],
|
|
message=AIMessageChunk( # type: ignore[call-arg]
|
|
content=msg.content,
|
|
role="assistant",
|
|
additional_kwargs=additional_kwargs,
|
|
),
|
|
generation_info=msg.additional_kwargs,
|
|
)
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tool-like objects to this chat model.
|
|
|
|
Assumes model is compatible with OpenAI tool-calling API.
|
|
|
|
Args:
|
|
tools: A list of tool definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
|
models, callables, and BaseTools will be automatically converted to
|
|
their schema dictionary representation.
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
|
|
formatted_tools = [convert_to_openai_tool(tool)["function"] for tool in tools]
|
|
return super().bind(functions=formatted_tools, **kwargs)
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Union[Dict, Type[BaseModel]],
|
|
*,
|
|
include_raw: bool = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
|
then the model output will be an object of that class. If a dict then
|
|
the model output will be a dict. With a Pydantic class the returned
|
|
attributes will be validated, whereas with a dict they will not be. If
|
|
`method` is "function_calling" and `schema` is a dict, then the dict
|
|
must match the OpenAI function-calling spec.
|
|
include_raw: If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
Returns:
|
|
A Runnable that takes any ChatModel input and returns as output:
|
|
|
|
If include_raw is True then a dict with keys:
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
If include_raw is False then just _DictOrPydantic is returned,
|
|
where _DictOrPydantic depends on the schema:
|
|
|
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
|
class.
|
|
|
|
If schema is a dict then _DictOrPydantic is a dict.
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import QianfanChatEndpoint
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = QianfanChatEndpoint(endpoint="ernie-3.5-8k-0329")
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
|
|
# -> AnswerWithJustification(
|
|
# answer='They weigh the same',
|
|
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
|
# )
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import QianfanChatEndpoint
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = QianfanChatEndpoint(endpoint="ernie-3.5-8k-0329")
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
|
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import QianfanChatEndpoint
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
|
llm = QianfanChatEndpoint(endpoint="ernie-3.5-8k-0329")
|
|
structured_llm = llm.with_structured_output(dict_schema)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'answer': 'They weigh the same',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
|
# }
|
|
|
|
""" # noqa: E501
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
is_pydantic_schema = isinstance(schema, type) and issubclass(schema, BaseModel)
|
|
llm = self.bind_tools([schema])
|
|
if is_pydantic_schema:
|
|
output_parser: OutputParserLike = PydanticToolsParser(
|
|
tools=[schema], # type: ignore[list-item]
|
|
first_tool_only=True, # type: ignore[list-item]
|
|
)
|
|
else:
|
|
key_name = convert_to_openai_tool(schema)["function"]["name"]
|
|
output_parser = JsonOutputKeyToolsParser(
|
|
key_name=key_name, first_tool_only=True
|
|
)
|
|
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|