mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
2aae1102b0
### Description Add instance anonymization - if `John Doe` will appear twice in the text, it will be treated as the same entity. The difference between `PresidioAnonymizer` and `PresidioReversibleAnonymizer` is that only the second one has a built-in memory, so it will remember anonymization mapping for multiple texts: ``` >>> anonymizer = PresidioAnonymizer() >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!") 'My name is Noah Rhodes. Hi Noah Rhodes!' >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!") 'My name is Brett Russell. Hi Brett Russell!' ``` ``` >>> anonymizer = PresidioReversibleAnonymizer() >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!") 'My name is Noah Rhodes. Hi Noah Rhodes!' >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!") 'My name is Noah Rhodes. Hi Noah Rhodes!' ``` ### Twitter handle @deepsense_ai / @MaksOpp ### Tag maintainer @baskaryan @hwchase17 @hinthornw --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
140 lines
4.6 KiB
Python
140 lines
4.6 KiB
Python
import re
|
|
from collections import defaultdict
|
|
from dataclasses import dataclass, field
|
|
from typing import Dict, List
|
|
|
|
from presidio_analyzer import RecognizerResult
|
|
from presidio_anonymizer.entities import EngineResult
|
|
|
|
MappingDataType = Dict[str, Dict[str, str]]
|
|
|
|
|
|
def format_duplicated_operator(operator_name: str, count: int) -> str:
|
|
"""Format the operator name with the count"""
|
|
|
|
clean_operator_name = re.sub(r"[<>]", "", operator_name)
|
|
clean_operator_name = re.sub(r"_\d+$", "", clean_operator_name)
|
|
|
|
if operator_name.startswith("<") and operator_name.endswith(">"):
|
|
return f"<{clean_operator_name}_{count}>"
|
|
else:
|
|
return f"{clean_operator_name}_{count}"
|
|
|
|
|
|
@dataclass
|
|
class DeanonymizerMapping:
|
|
mapping: MappingDataType = field(
|
|
default_factory=lambda: defaultdict(lambda: defaultdict(str))
|
|
)
|
|
|
|
@property
|
|
def data(self) -> MappingDataType:
|
|
"""Return the deanonymizer mapping"""
|
|
return {k: dict(v) for k, v in self.mapping.items()}
|
|
|
|
def update(self, new_mapping: MappingDataType) -> None:
|
|
"""Update the deanonymizer mapping with new values
|
|
Duplicated values will not be added
|
|
If there are multiple entities of the same type, the mapping will
|
|
include a count to differentiate them. For example, if there are
|
|
two names in the input text, the mapping will include NAME_1 and NAME_2.
|
|
"""
|
|
seen_values = set()
|
|
|
|
for entity_type, values in new_mapping.items():
|
|
count = len(self.mapping[entity_type]) + 1
|
|
|
|
for key, value in values.items():
|
|
if (
|
|
value not in seen_values
|
|
and value not in self.mapping[entity_type].values()
|
|
):
|
|
new_key = (
|
|
format_duplicated_operator(key, count)
|
|
if key in self.mapping[entity_type]
|
|
else key
|
|
)
|
|
|
|
self.mapping[entity_type][new_key] = value
|
|
seen_values.add(value)
|
|
count += 1
|
|
|
|
|
|
def create_anonymizer_mapping(
|
|
original_text: str,
|
|
analyzer_results: List[RecognizerResult],
|
|
anonymizer_results: EngineResult,
|
|
is_reversed: bool = False,
|
|
) -> MappingDataType:
|
|
"""Creates or updates the mapping used to anonymize and/or deanonymize text.
|
|
|
|
This method exploits the results returned by the
|
|
analysis and anonymization processes.
|
|
|
|
If is_reversed is True, it constructs a mapping from each original
|
|
entity to its anonymized value.
|
|
|
|
If is_reversed is False, it constructs a mapping from each
|
|
anonymized entity back to its original text value.
|
|
|
|
If there are multiple entities of the same type, the mapping will
|
|
include a count to differentiate them. For example, if there are
|
|
two names in the input text, the mapping will include NAME_1 and NAME_2.
|
|
|
|
Example of mapping:
|
|
{
|
|
"PERSON": {
|
|
"<original>": "<anonymized>",
|
|
"John Doe": "Slim Shady"
|
|
},
|
|
"PHONE_NUMBER": {
|
|
"111-111-1111": "555-555-5555"
|
|
}
|
|
...
|
|
}
|
|
"""
|
|
# We are able to zip and loop through both lists because we expect
|
|
# them to return corresponding entities for each identified piece
|
|
# of analyzable data from our input.
|
|
|
|
# We sort them by their 'start' attribute because it allows us to
|
|
# match corresponding entities by their position in the input text.
|
|
analyzer_results.sort(key=lambda d: d.start)
|
|
anonymizer_results.items.sort(key=lambda d: d.start)
|
|
|
|
mapping: MappingDataType = defaultdict(dict)
|
|
count: dict = defaultdict(int)
|
|
|
|
for analyzed, anonymized in zip(analyzer_results, anonymizer_results.items):
|
|
original_value = original_text[analyzed.start : analyzed.end]
|
|
entity_type = anonymized.entity_type
|
|
|
|
if is_reversed:
|
|
cond = original_value in mapping[entity_type].values()
|
|
else:
|
|
cond = original_value in mapping[entity_type]
|
|
|
|
if cond:
|
|
continue
|
|
|
|
if (
|
|
anonymized.text in mapping[entity_type].values()
|
|
or anonymized.text in mapping[entity_type]
|
|
):
|
|
anonymized_value = format_duplicated_operator(
|
|
anonymized.text, count[entity_type] + 2
|
|
)
|
|
count[entity_type] += 1
|
|
else:
|
|
anonymized_value = anonymized.text
|
|
|
|
mapping_key, mapping_value = (
|
|
(anonymized_value, original_value)
|
|
if is_reversed
|
|
else (original_value, anonymized_value)
|
|
)
|
|
|
|
mapping[entity_type][mapping_key] = mapping_value
|
|
|
|
return mapping
|