mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
4abe85be57
Co-authored-by: Wrick Talukdar <wrick.talukdar@gmail.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Lucky-Lance <77819606+Lucky-Lance@users.noreply.github.com> Co-authored-by: 陆徐东 <luxudong@MacBook-Pro.local>
165 lines
6.3 KiB
Python
165 lines
6.3 KiB
Python
import asyncio
|
|
from typing import Any, Dict, Optional
|
|
|
|
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
|
|
ModerationPiiError,
|
|
)
|
|
|
|
|
|
class ComprehendPII:
|
|
def __init__(
|
|
self,
|
|
client: Any,
|
|
callback: Optional[Any] = None,
|
|
unique_id: Optional[str] = None,
|
|
chain_id: Optional[str] = None,
|
|
) -> None:
|
|
self.client = client
|
|
self.moderation_beacon = {
|
|
"moderation_chain_id": chain_id,
|
|
"moderation_type": "PII",
|
|
"moderation_status": "LABELS_NOT_FOUND",
|
|
}
|
|
self.callback = callback
|
|
self.unique_id = unique_id
|
|
|
|
def validate(self, prompt_value: str, config: Any = None) -> str:
|
|
redact = config.get("redact")
|
|
return (
|
|
self._detect_pii(prompt_value=prompt_value, config=config)
|
|
if redact
|
|
else self._contains_pii(prompt_value=prompt_value, config=config)
|
|
)
|
|
|
|
def _contains_pii(self, prompt_value: str, config: Any = None) -> str:
|
|
"""
|
|
Checks for Personally Identifiable Information (PII) labels above a
|
|
specified threshold. Uses Amazon Comprehend Contains PII Entities API. See -
|
|
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ContainsPiiEntities.html
|
|
Args:
|
|
prompt_value (str): The input text to be checked for PII labels.
|
|
config (Dict[str, Any]): Configuration for PII check and actions.
|
|
|
|
Returns:
|
|
str: the original prompt
|
|
|
|
Note:
|
|
- The provided client should be initialized with valid AWS credentials.
|
|
"""
|
|
pii_identified = self.client.contains_pii_entities(
|
|
Text=prompt_value, LanguageCode="en"
|
|
)
|
|
|
|
if self.callback and self.callback.pii_callback:
|
|
self.moderation_beacon["moderation_input"] = prompt_value
|
|
self.moderation_beacon["moderation_output"] = pii_identified
|
|
|
|
threshold = config.get("threshold")
|
|
pii_labels = config.get("labels")
|
|
pii_found = False
|
|
for entity in pii_identified["Labels"]:
|
|
if (entity["Score"] >= threshold and entity["Name"] in pii_labels) or (
|
|
entity["Score"] >= threshold and not pii_labels
|
|
):
|
|
pii_found = True
|
|
break
|
|
|
|
if self.callback and self.callback.pii_callback:
|
|
if pii_found:
|
|
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
|
|
asyncio.create_task(
|
|
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
|
|
)
|
|
if pii_found:
|
|
raise ModerationPiiError
|
|
return prompt_value
|
|
|
|
def _detect_pii(self, prompt_value: str, config: Optional[Dict[str, Any]]) -> str:
|
|
"""
|
|
Detects and handles Personally Identifiable Information (PII) entities in the
|
|
given prompt text using Amazon Comprehend's detect_pii_entities API. The
|
|
function provides options to redact or stop processing based on the identified
|
|
PII entities and a provided configuration. Uses Amazon Comprehend Detect PII
|
|
Entities API.
|
|
|
|
Args:
|
|
prompt_value (str): The input text to be checked for PII entities.
|
|
config (Dict[str, Any]): A configuration specifying how to handle
|
|
PII entities.
|
|
|
|
Returns:
|
|
str: The processed prompt text with redacted PII entities or raised
|
|
exceptions.
|
|
|
|
Raises:
|
|
ValueError: If the prompt contains configured PII entities for
|
|
stopping processing.
|
|
|
|
Note:
|
|
- If PII is not found in the prompt, the original prompt is returned.
|
|
- The client should be initialized with valid AWS credentials.
|
|
"""
|
|
pii_identified = self.client.detect_pii_entities(
|
|
Text=prompt_value, LanguageCode="en"
|
|
)
|
|
|
|
if self.callback and self.callback.pii_callback:
|
|
self.moderation_beacon["moderation_input"] = prompt_value
|
|
self.moderation_beacon["moderation_output"] = pii_identified
|
|
|
|
if (pii_identified["Entities"]) == []:
|
|
if self.callback and self.callback.pii_callback:
|
|
asyncio.create_task(
|
|
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
|
|
)
|
|
return prompt_value
|
|
|
|
pii_found = False
|
|
if not config and pii_identified["Entities"]:
|
|
for entity in pii_identified["Entities"]:
|
|
if entity["Score"] >= 0.5:
|
|
pii_found = True
|
|
break
|
|
|
|
if self.callback and self.callback.pii_callback:
|
|
if pii_found:
|
|
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
|
|
asyncio.create_task(
|
|
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
|
|
)
|
|
if pii_found:
|
|
raise ModerationPiiError
|
|
else:
|
|
threshold = config.get("threshold") # type: ignore
|
|
pii_labels = config.get("labels") # type: ignore
|
|
mask_marker = config.get("mask_character") # type: ignore
|
|
pii_found = False
|
|
|
|
for entity in pii_identified["Entities"]:
|
|
if (
|
|
pii_labels
|
|
and entity["Type"] in pii_labels
|
|
and entity["Score"] >= threshold
|
|
) or (not pii_labels and entity["Score"] >= threshold):
|
|
pii_found = True
|
|
char_offset_begin = entity["BeginOffset"]
|
|
char_offset_end = entity["EndOffset"]
|
|
|
|
mask_length = char_offset_end - char_offset_begin + 1
|
|
masked_part = mask_marker * mask_length
|
|
|
|
prompt_value = (
|
|
prompt_value[:char_offset_begin]
|
|
+ masked_part
|
|
+ prompt_value[char_offset_end + 1 :]
|
|
)
|
|
|
|
if self.callback and self.callback.pii_callback:
|
|
if pii_found:
|
|
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
|
|
asyncio.create_task(
|
|
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
|
|
)
|
|
|
|
return prompt_value
|