mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
176 lines
7.1 KiB
Python
176 lines
7.1 KiB
Python
"""
|
|
.. warning::
|
|
Beta Feature!
|
|
|
|
**Cache** provides an optional caching layer for LLMs.
|
|
|
|
Cache is useful for two reasons:
|
|
|
|
- It can save you money by reducing the number of API calls you make to the LLM
|
|
provider if you're often requesting the same completion multiple times.
|
|
- It can speed up your application by reducing the number of API calls you make
|
|
to the LLM provider.
|
|
|
|
Cache directly competes with Memory. See documentation for Pros and Cons.
|
|
|
|
**Class hierarchy:**
|
|
|
|
.. code-block::
|
|
|
|
BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Dict, Optional, Sequence, Tuple
|
|
|
|
from langchain_core.outputs import Generation
|
|
from langchain_core.runnables import run_in_executor
|
|
|
|
RETURN_VAL_TYPE = Sequence[Generation]
|
|
|
|
|
|
class BaseCache(ABC):
|
|
"""This interfaces provides a caching layer for LLMs and Chat models.
|
|
|
|
The cache interface consists of the following methods:
|
|
|
|
- lookup: Look up a value based on a prompt and llm_string.
|
|
- update: Update the cache based on a prompt and llm_string.
|
|
- clear: Clear the cache.
|
|
|
|
In addition, the cache interface provides an async version of each method.
|
|
|
|
The default implementation of the async methods is to run the synchronous
|
|
method in an executor. It's recommended to override the async methods
|
|
and provide an async implementations to avoid unnecessary overhead.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string.
|
|
|
|
A cache implementation is expected to generate a key from the 2-tuple
|
|
of prompt and llm_string (e.g., by concatenating them with a delimiter).
|
|
|
|
Args:
|
|
prompt: a string representation of the prompt.
|
|
In the case of a Chat model, the prompt is a non-trivial
|
|
serialization of the prompt into the language model.
|
|
llm_string: A string representation of the LLM configuration.
|
|
This is used to capture the invocation parameters of the LLM
|
|
(e.g., model name, temperature, stop tokens, max tokens, etc.).
|
|
These invocation parameters are serialized into a string
|
|
representation.
|
|
|
|
Returns:
|
|
On a cache miss, return None. On a cache hit, return the cached value.
|
|
The cached value is a list of Generations (or subclasses).
|
|
"""
|
|
|
|
@abstractmethod
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string.
|
|
|
|
The prompt and llm_string are used to generate a key for the cache.
|
|
The key should match that of the look up method.
|
|
|
|
Args:
|
|
prompt: a string representation of the prompt.
|
|
In the case of a Chat model, the prompt is a non-trivial
|
|
serialization of the prompt into the language model.
|
|
llm_string: A string representation of the LLM configuration.
|
|
This is used to capture the invocation parameters of the LLM
|
|
(e.g., model name, temperature, stop tokens, max tokens, etc.).
|
|
These invocation parameters are serialized into a string
|
|
representation.
|
|
return_val: The value to be cached. The value is a list of Generations
|
|
(or subclasses).
|
|
"""
|
|
|
|
@abstractmethod
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear cache that can take additional keyword arguments."""
|
|
|
|
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string.
|
|
|
|
A cache implementation is expected to generate a key from the 2-tuple
|
|
of prompt and llm_string (e.g., by concatenating them with a delimiter).
|
|
|
|
Args:
|
|
prompt: a string representation of the prompt.
|
|
In the case of a Chat model, the prompt is a non-trivial
|
|
serialization of the prompt into the language model.
|
|
llm_string: A string representation of the LLM configuration.
|
|
This is used to capture the invocation parameters of the LLM
|
|
(e.g., model name, temperature, stop tokens, max tokens, etc.).
|
|
These invocation parameters are serialized into a string
|
|
representation.
|
|
|
|
Returns:
|
|
On a cache miss, return None. On a cache hit, return the cached value.
|
|
The cached value is a list of Generations (or subclasses).
|
|
"""
|
|
return await run_in_executor(None, self.lookup, prompt, llm_string)
|
|
|
|
async def aupdate(
|
|
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
|
|
) -> None:
|
|
"""Update cache based on prompt and llm_string.
|
|
|
|
The prompt and llm_string are used to generate a key for the cache.
|
|
The key should match that of the look up method.
|
|
|
|
Args:
|
|
prompt: a string representation of the prompt.
|
|
In the case of a Chat model, the prompt is a non-trivial
|
|
serialization of the prompt into the language model.
|
|
llm_string: A string representation of the LLM configuration.
|
|
This is used to capture the invocation parameters of the LLM
|
|
(e.g., model name, temperature, stop tokens, max tokens, etc.).
|
|
These invocation parameters are serialized into a string
|
|
representation.
|
|
return_val: The value to be cached. The value is a list of Generations
|
|
(or subclasses).
|
|
"""
|
|
return await run_in_executor(None, self.update, prompt, llm_string, return_val)
|
|
|
|
async def aclear(self, **kwargs: Any) -> None:
|
|
"""Clear cache that can take additional keyword arguments."""
|
|
return await run_in_executor(None, self.clear, **kwargs)
|
|
|
|
|
|
class InMemoryCache(BaseCache):
|
|
"""Cache that stores things in memory."""
|
|
|
|
def __init__(self) -> None:
|
|
"""Initialize with empty cache."""
|
|
self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {}
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
return self._cache.get((prompt, llm_string), None)
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
self._cache[(prompt, llm_string)] = return_val
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear cache."""
|
|
self._cache = {}
|
|
|
|
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
return self.lookup(prompt, llm_string)
|
|
|
|
async def aupdate(
|
|
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
|
|
) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
self.update(prompt, llm_string, return_val)
|
|
|
|
async def aclear(self, **kwargs: Any) -> None:
|
|
"""Clear cache."""
|
|
self.clear()
|