mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
932c52c333
- added missed docstrings - formated docstrings to the consistent form
1021 lines
38 KiB
Python
1021 lines
38 KiB
Python
from __future__ import annotations
|
|
|
|
import contextlib
|
|
import enum
|
|
import logging
|
|
import uuid
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Generator,
|
|
Iterable,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
import numpy as np
|
|
import sqlalchemy
|
|
from sqlalchemy import delete, func
|
|
from sqlalchemy.dialects.postgresql import JSON, UUID
|
|
from sqlalchemy.exc import ProgrammingError
|
|
from sqlalchemy.orm import Session
|
|
from sqlalchemy.sql import quoted_name
|
|
|
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
try:
|
|
from sqlalchemy.orm import declarative_base
|
|
except ImportError:
|
|
from sqlalchemy.ext.declarative import declarative_base
|
|
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
ADA_TOKEN_COUNT = 1536
|
|
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
|
|
|
|
|
|
def _results_to_docs(docs_and_scores: Any) -> List[Document]:
|
|
"""Return docs from docs and scores."""
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
|
|
class BaseEmbeddingStore:
|
|
"""Base class for the Lantern embedding store."""
|
|
|
|
|
|
def get_embedding_store(
|
|
distance_strategy: DistanceStrategy, collection_name: str
|
|
) -> Any:
|
|
"""Get the embedding store class."""
|
|
|
|
embedding_type = None
|
|
|
|
if distance_strategy == DistanceStrategy.HAMMING:
|
|
embedding_type = sqlalchemy.INTEGER # type: ignore
|
|
else:
|
|
embedding_type = sqlalchemy.REAL # type: ignore
|
|
|
|
DynamicBase = declarative_base(class_registry=dict()) # type: Any
|
|
|
|
class EmbeddingStore(DynamicBase, BaseEmbeddingStore):
|
|
__tablename__ = collection_name
|
|
uuid = sqlalchemy.Column(
|
|
UUID(as_uuid=True), primary_key=True, default=uuid.uuid4
|
|
)
|
|
__table_args__ = {"extend_existing": True}
|
|
document = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
|
cmetadata = sqlalchemy.Column(JSON, nullable=True)
|
|
# custom_id : any user defined id
|
|
custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
|
embedding = sqlalchemy.Column(sqlalchemy.ARRAY(embedding_type)) # type: ignore
|
|
|
|
return EmbeddingStore
|
|
|
|
|
|
class QueryResult:
|
|
"""Result from a query."""
|
|
|
|
EmbeddingStore: BaseEmbeddingStore
|
|
distance: float
|
|
|
|
|
|
class DistanceStrategy(str, enum.Enum):
|
|
"""Enumerator of the Distance strategies."""
|
|
|
|
EUCLIDEAN = "l2sq"
|
|
COSINE = "cosine"
|
|
HAMMING = "hamming"
|
|
|
|
|
|
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
|
|
|
|
|
|
class Lantern(VectorStore):
|
|
"""`Postgres` with the `lantern` extension as a vector store.
|
|
|
|
lantern uses sequential scan by default. but you can create a HNSW index
|
|
using the create_hnsw_index method.
|
|
- `connection_string` is a postgres connection string.
|
|
- `embedding_function` any embedding function implementing
|
|
`langchain.embeddings.base.Embeddings` interface.
|
|
- `collection_name` is the name of the collection to use. (default: langchain)
|
|
- NOTE: This is the name of the table in which embedding data will be stored
|
|
The table will be created when initializing the store (if not exists)
|
|
So, make sure the user has the right permissions to create tables.
|
|
- `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN)
|
|
- `EUCLIDEAN` is the euclidean distance.
|
|
- `COSINE` is the cosine distance.
|
|
- `HAMMING` is the hamming distance.
|
|
- `pre_delete_collection` if True, will delete the collection if it exists.
|
|
(default: False)
|
|
- Useful for testing.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
connection_string: str,
|
|
embedding_function: Embeddings,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
collection_metadata: Optional[dict] = None,
|
|
pre_delete_collection: bool = False,
|
|
logger: Optional[logging.Logger] = None,
|
|
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
|
) -> None:
|
|
self.connection_string = connection_string
|
|
self.embedding_function = embedding_function
|
|
self.collection_name = collection_name
|
|
self.collection_metadata = collection_metadata
|
|
self._distance_strategy = distance_strategy
|
|
self.pre_delete_collection = pre_delete_collection
|
|
self.logger = logger or logging.getLogger(__name__)
|
|
self.override_relevance_score_fn = relevance_score_fn
|
|
self.EmbeddingStore = get_embedding_store(
|
|
self.distance_strategy, collection_name
|
|
)
|
|
self.__post_init__()
|
|
|
|
def __post_init__(
|
|
self,
|
|
) -> None:
|
|
self._conn = self.connect()
|
|
self.create_hnsw_extension()
|
|
self.create_collection()
|
|
|
|
@property
|
|
def distance_strategy(self) -> DistanceStrategy:
|
|
if isinstance(self._distance_strategy, DistanceStrategy):
|
|
return self._distance_strategy
|
|
|
|
if self._distance_strategy == DistanceStrategy.EUCLIDEAN.value:
|
|
return DistanceStrategy.EUCLIDEAN
|
|
elif self._distance_strategy == DistanceStrategy.COSINE.value:
|
|
return DistanceStrategy.COSINE
|
|
elif self._distance_strategy == DistanceStrategy.HAMMING.value:
|
|
return DistanceStrategy.HAMMING
|
|
else:
|
|
raise ValueError(
|
|
f"Got unexpected value for distance: {self._distance_strategy}. "
|
|
f"Should be one of {', '.join([ds.value for ds in DistanceStrategy])}."
|
|
)
|
|
|
|
@property
|
|
def embeddings(self) -> Embeddings:
|
|
return self.embedding_function
|
|
|
|
@classmethod
|
|
def connection_string_from_db_params(
|
|
cls,
|
|
driver: str,
|
|
host: str,
|
|
port: int,
|
|
database: str,
|
|
user: str,
|
|
password: str,
|
|
) -> str:
|
|
"""Return connection string from database parameters."""
|
|
return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
|
|
|
|
def connect(self) -> sqlalchemy.engine.Connection:
|
|
engine = sqlalchemy.create_engine(self.connection_string)
|
|
conn = engine.connect()
|
|
return conn
|
|
|
|
@property
|
|
def distance_function(self) -> Any:
|
|
if self.distance_strategy == DistanceStrategy.EUCLIDEAN:
|
|
return "l2sq_dist"
|
|
elif self.distance_strategy == DistanceStrategy.COSINE:
|
|
return "cos_dist"
|
|
elif self.distance_strategy == DistanceStrategy.HAMMING:
|
|
return "hamming_dist"
|
|
|
|
def create_hnsw_extension(self) -> None:
|
|
try:
|
|
with Session(self._conn) as session:
|
|
statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS lantern")
|
|
session.execute(statement)
|
|
session.commit()
|
|
except Exception as e:
|
|
self.logger.exception(e)
|
|
|
|
def create_tables_if_not_exists(self) -> None:
|
|
try:
|
|
self.create_collection()
|
|
except ProgrammingError:
|
|
pass
|
|
|
|
def drop_table(self) -> None:
|
|
try:
|
|
self.EmbeddingStore.__table__.drop(self._conn.engine)
|
|
except ProgrammingError:
|
|
pass
|
|
|
|
def drop_tables(self) -> None:
|
|
self.drop_table()
|
|
|
|
def _hamming_relevance_score_fn(self, distance: float) -> float:
|
|
return distance
|
|
|
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
|
"""
|
|
The 'correct' relevance function
|
|
may differ depending on a few things, including:
|
|
- the distance / similarity metric used by the VectorStore
|
|
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
|
- embedding dimensionality
|
|
- etc.
|
|
"""
|
|
if self.override_relevance_score_fn is not None:
|
|
return self.override_relevance_score_fn
|
|
|
|
# Default strategy is to rely on distance strategy provided
|
|
# in vectorstore constructor
|
|
if self.distance_strategy == DistanceStrategy.COSINE:
|
|
return self._cosine_relevance_score_fn
|
|
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN:
|
|
return self._euclidean_relevance_score_fn
|
|
elif self.distance_strategy == DistanceStrategy.HAMMING:
|
|
return self._hamming_relevance_score_fn
|
|
else:
|
|
raise ValueError(
|
|
"No supported normalization function"
|
|
f" for distance_strategy of {self._distance_strategy}."
|
|
"Consider providing relevance_score_fn to Lantern constructor."
|
|
)
|
|
|
|
def _get_op_class(self) -> str:
|
|
if self.distance_strategy == DistanceStrategy.COSINE:
|
|
return "dist_cos_ops"
|
|
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN:
|
|
return "dist_l2sq_ops"
|
|
elif self.distance_strategy == DistanceStrategy.HAMMING:
|
|
return "dist_hamming_ops"
|
|
else:
|
|
raise ValueError(
|
|
"No supported operator class"
|
|
f" for distance_strategy of {self._distance_strategy}."
|
|
)
|
|
|
|
def _get_operator(self) -> str:
|
|
if self.distance_strategy == DistanceStrategy.COSINE:
|
|
return "<=>"
|
|
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN:
|
|
return "<->"
|
|
elif self.distance_strategy == DistanceStrategy.HAMMING:
|
|
return "<+>"
|
|
else:
|
|
raise ValueError(
|
|
"No supported operator"
|
|
f" for distance_strategy of {self._distance_strategy}."
|
|
)
|
|
|
|
def _typed_arg_for_distance(
|
|
self, embedding: List[Union[float, int]]
|
|
) -> List[Union[float, int]]:
|
|
if self.distance_strategy == DistanceStrategy.HAMMING:
|
|
return list(map(lambda x: int(x), embedding))
|
|
return embedding
|
|
|
|
@property
|
|
def _index_name(self) -> str:
|
|
return f"langchain_{self.collection_name}_idx"
|
|
|
|
def create_hnsw_index(
|
|
self,
|
|
dims: int = ADA_TOKEN_COUNT,
|
|
m: int = 16,
|
|
ef_construction: int = 64,
|
|
ef_search: int = 64,
|
|
**_kwargs: Any,
|
|
) -> None:
|
|
"""Create HNSW index on collection.
|
|
|
|
Optional Keyword Args for HNSW Index:
|
|
engine: "nmslib", "faiss", "lucene"; default: "nmslib"
|
|
|
|
ef: Size of the dynamic list used during k-NN searches. Higher values
|
|
lead to more accurate but slower searches; default: 64
|
|
|
|
ef_construction: Size of the dynamic list used during k-NN graph creation.
|
|
Higher values lead to more accurate graph but slower indexing speed;
|
|
default: 64
|
|
|
|
m: Number of bidirectional links created for each new element. Large impact
|
|
on memory consumption. Between 2 and 100; default: 16
|
|
|
|
dims: Dimensions of the vectors in collection. default: 1536
|
|
"""
|
|
create_index_query = sqlalchemy.text(
|
|
"CREATE INDEX IF NOT EXISTS {} "
|
|
"ON {} USING hnsw (embedding {}) "
|
|
"WITH ("
|
|
"dim = :dim, "
|
|
"m = :m, "
|
|
"ef_construction = :ef_construction, "
|
|
"ef = :ef"
|
|
");".format(
|
|
quoted_name(self._index_name, True),
|
|
quoted_name(self.collection_name, True),
|
|
self._get_op_class(),
|
|
)
|
|
)
|
|
|
|
with Session(self._conn) as session:
|
|
# Create the HNSW index
|
|
session.execute(
|
|
create_index_query,
|
|
{
|
|
"dim": dims,
|
|
"m": m,
|
|
"ef_construction": ef_construction,
|
|
"ef": ef_search,
|
|
},
|
|
)
|
|
session.commit()
|
|
self.logger.info("HNSW extension and index created successfully.")
|
|
|
|
def drop_index(self) -> None:
|
|
with Session(self._conn) as session:
|
|
# Drop the HNSW index
|
|
session.execute(
|
|
sqlalchemy.text(
|
|
"DROP INDEX IF EXISTS {}".format(
|
|
quoted_name(self._index_name, True)
|
|
)
|
|
)
|
|
)
|
|
session.commit()
|
|
|
|
def create_collection(self) -> None:
|
|
if self.pre_delete_collection:
|
|
self.delete_collection()
|
|
self.drop_table()
|
|
|
|
with self._conn.begin():
|
|
try:
|
|
self.EmbeddingStore.__table__.create(self._conn.engine)
|
|
except ProgrammingError as e:
|
|
# Duplicate table
|
|
if e.code == "f405":
|
|
pass
|
|
else:
|
|
raise e
|
|
|
|
def delete_collection(self) -> None:
|
|
self.logger.debug("Trying to delete collection")
|
|
self.drop_table()
|
|
|
|
@contextlib.contextmanager
|
|
def _make_session(self) -> Generator[Session, None, None]:
|
|
"""Create a context manager for the session, bind to _conn string."""
|
|
yield Session(self._conn)
|
|
|
|
def delete(
|
|
self,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Delete vectors by ids or uuids.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
"""
|
|
with Session(self._conn) as session:
|
|
if ids is not None:
|
|
self.logger.debug(
|
|
"Trying to delete vectors by ids (represented by the model "
|
|
"using the custom ids field)"
|
|
)
|
|
stmt = delete(self.EmbeddingStore).where(
|
|
self.EmbeddingStore.custom_id.in_(ids)
|
|
)
|
|
session.execute(stmt)
|
|
session.commit()
|
|
|
|
@classmethod
|
|
def _initialize_from_embeddings(
|
|
cls,
|
|
texts: List[str],
|
|
embeddings: List[List[float]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> Lantern:
|
|
"""
|
|
Order of elements for lists `ids`, `embeddings`, `texts`, `metadatas`
|
|
should match, so each row will be associated with correct values.
|
|
|
|
Postgres connection string is required
|
|
"Either pass it as `connection_string` parameter
|
|
or set the LANTERN_CONNECTION_STRING environment variable.
|
|
|
|
- `texts` texts to insert into collection.
|
|
- `embeddings` an Embeddings to insert into collection
|
|
- `embedding` is :class:`Embeddings` that will be used for
|
|
embedding the text sent. If none is sent, then the
|
|
multilingual Tensorflow Universal Sentence Encoder will be used.
|
|
- `metadatas` row metadata to insert into collection.
|
|
- `ids` row ids to insert into collection.
|
|
- `collection_name` is the name of the collection to use. (default: langchain)
|
|
- NOTE: This is the name of the table in which embedding data will be stored
|
|
The table will be created when initializing the store (if not exists)
|
|
So, make sure the user has the right permissions to create tables.
|
|
- `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN)
|
|
- `EUCLIDEAN` is the euclidean distance.
|
|
- `COSINE` is the cosine distance.
|
|
- `HAMMING` is the hamming distance.
|
|
- `pre_delete_collection` if True, will delete the collection if it exists.
|
|
(default: False)
|
|
- Useful for testing.
|
|
"""
|
|
if ids is None:
|
|
ids = [str(uuid.uuid1()) for _ in texts]
|
|
|
|
if not metadatas:
|
|
metadatas = [{} for _ in texts]
|
|
|
|
connection_string = cls.__get_connection_string(kwargs)
|
|
|
|
store = cls(
|
|
connection_string=connection_string,
|
|
collection_name=collection_name,
|
|
embedding_function=embedding,
|
|
pre_delete_collection=pre_delete_collection,
|
|
distance_strategy=distance_strategy,
|
|
)
|
|
|
|
store.add_embeddings(
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
|
)
|
|
|
|
store.create_hnsw_index(**kwargs)
|
|
|
|
return store
|
|
|
|
def add_embeddings(
|
|
self,
|
|
texts: List[str],
|
|
embeddings: List[List[float]],
|
|
metadatas: List[dict],
|
|
ids: List[str],
|
|
**kwargs: Any,
|
|
) -> None:
|
|
with Session(self._conn) as session:
|
|
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
|
|
embedding_store = self.EmbeddingStore(
|
|
embedding=embedding,
|
|
document=text,
|
|
cmetadata=metadata,
|
|
custom_id=id,
|
|
)
|
|
session.add(embedding_store)
|
|
session.commit()
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
|
|
embeddings = self.embedding_function.embed_documents(list(texts))
|
|
|
|
if not metadatas:
|
|
metadatas = [{} for _ in texts]
|
|
|
|
with Session(self._conn) as session:
|
|
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
|
|
embedding_store = self.EmbeddingStore(
|
|
embedding=embedding,
|
|
document=text,
|
|
cmetadata=metadata,
|
|
custom_id=id,
|
|
)
|
|
session.add(embedding_store)
|
|
session.commit()
|
|
|
|
return ids
|
|
|
|
def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, float]]:
|
|
"""Return docs and scores from results."""
|
|
docs = [
|
|
(
|
|
Document(
|
|
page_content=result.EmbeddingStore.document,
|
|
metadata=result.EmbeddingStore.cmetadata,
|
|
),
|
|
result.distance if self.embedding_function is not None else None,
|
|
)
|
|
for result in results
|
|
]
|
|
return docs
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
embedding = self.embedding_function.embed_query(text=query)
|
|
return self.similarity_search_by_vector(
|
|
embedding=embedding,
|
|
k=k,
|
|
filter=filter,
|
|
)
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
) -> List[Tuple[Document, float]]:
|
|
embedding = self.embedding_function.embed_query(query)
|
|
docs = self.similarity_search_with_score_by_vector(
|
|
embedding=embedding, k=k, filter=filter
|
|
)
|
|
return docs
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
) -> List[Tuple[Document, float]]:
|
|
results = self.__query_collection(embedding=embedding, k=k, filter=filter)
|
|
|
|
return self._results_to_docs_and_scores(results)
|
|
|
|
def __query_collection(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
) -> List[Any]:
|
|
with Session(self._conn) as session:
|
|
set_enable_seqscan_stmt = sqlalchemy.text("SET enable_seqscan = off")
|
|
set_init_k = sqlalchemy.text("SET hnsw.init_k = :k")
|
|
session.execute(set_enable_seqscan_stmt)
|
|
session.execute(set_init_k, {"k": k})
|
|
|
|
filter_by = None
|
|
if filter is not None:
|
|
filter_clauses = []
|
|
for key, value in filter.items():
|
|
IN = "in"
|
|
if isinstance(value, dict) and IN in map(str.lower, value):
|
|
value_case_insensitive = {
|
|
k.lower(): v for k, v in value.items()
|
|
}
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[
|
|
key
|
|
].astext.in_(value_case_insensitive[IN])
|
|
filter_clauses.append(filter_by_metadata)
|
|
else:
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[
|
|
key
|
|
].astext == str(value)
|
|
filter_clauses.append(filter_by_metadata)
|
|
|
|
filter_by = sqlalchemy.and_(*filter_clauses)
|
|
|
|
embedding = self._typed_arg_for_distance(embedding)
|
|
query = session.query(
|
|
self.EmbeddingStore,
|
|
getattr(func, self.distance_function)(
|
|
self.EmbeddingStore.embedding, embedding
|
|
).label("distance"),
|
|
) # Specify the columns you need here, e.g., EmbeddingStore.embedding
|
|
|
|
if filter_by is not None:
|
|
query = query.filter(filter_by)
|
|
|
|
results: List[QueryResult] = (
|
|
query.order_by(
|
|
self.EmbeddingStore.embedding.op(self._get_operator())(embedding)
|
|
) # Using PostgreSQL specific operator with the correct column name
|
|
.limit(k)
|
|
.all()
|
|
)
|
|
|
|
return results
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
docs_and_scores = self.similarity_search_with_score_by_vector(
|
|
embedding=embedding, k=k, filter=filter
|
|
)
|
|
return _results_to_docs(docs_and_scores)
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls: Type[Lantern],
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> Lantern:
|
|
"""
|
|
Initialize Lantern vectorstore from list of texts.
|
|
The embeddings will be generated using `embedding` class provided.
|
|
|
|
Order of elements for lists `ids`, `texts`, `metadatas` should match,
|
|
so each row will be associated with correct values.
|
|
|
|
Postgres connection string is required
|
|
"Either pass it as `connection_string` parameter
|
|
or set the LANTERN_CONNECTION_STRING environment variable.
|
|
|
|
- `connection_string` is fully populated connection string for postgres database
|
|
- `texts` texts to insert into collection.
|
|
- `embedding` is :class:`Embeddings` that will be used for
|
|
embedding the text sent. If none is sent, then the
|
|
multilingual Tensorflow Universal Sentence Encoder will be used.
|
|
- `metadatas` row metadata to insert into collection.
|
|
- `collection_name` is the name of the collection to use. (default: langchain)
|
|
- NOTE: This is the name of the table in which embedding data will be stored
|
|
The table will be created when initializing the store (if not exists)
|
|
So, make sure the user has the right permissions to create tables.
|
|
- `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN)
|
|
- `EUCLIDEAN` is the euclidean distance.
|
|
- `COSINE` is the cosine distance.
|
|
- `HAMMING` is the hamming distance.
|
|
- `ids` row ids to insert into collection.
|
|
- `pre_delete_collection` if True, will delete the collection if it exists.
|
|
(default: False)
|
|
- Useful for testing.
|
|
"""
|
|
embeddings = embedding.embed_documents(list(texts))
|
|
|
|
return cls._initialize_from_embeddings(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
collection_name=collection_name,
|
|
pre_delete_collection=pre_delete_collection,
|
|
distance_strategy=distance_strategy,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_embeddings(
|
|
cls,
|
|
text_embeddings: List[Tuple[str, List[float]]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_collection: bool = False,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
**kwargs: Any,
|
|
) -> Lantern:
|
|
"""Construct Lantern wrapper from raw documents and pre-
|
|
generated embeddings.
|
|
|
|
Postgres connection string is required
|
|
"Either pass it as `connection_string` parameter
|
|
or set the LANTERN_CONNECTION_STRING environment variable.
|
|
|
|
Order of elements for lists `ids`, `text_embeddings`, `metadatas` should match,
|
|
so each row will be associated with correct values.
|
|
|
|
- `connection_string` is fully populated connection string for postgres database
|
|
- `text_embeddings` is array with tuples (text, embedding)
|
|
to insert into collection.
|
|
- `embedding` is :class:`Embeddings` that will be used for
|
|
embedding the text sent. If none is sent, then the
|
|
multilingual Tensorflow Universal Sentence Encoder will be used.
|
|
- `metadatas` row metadata to insert into collection.
|
|
- `collection_name` is the name of the collection to use. (default: langchain)
|
|
- NOTE: This is the name of the table in which embedding data will be stored
|
|
The table will be created when initializing the store (if not exists)
|
|
So, make sure the user has the right permissions to create tables.
|
|
- `ids` row ids to insert into collection.
|
|
- `pre_delete_collection` if True, will delete the collection if it exists.
|
|
(default: False)
|
|
- Useful for testing.
|
|
- `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN)
|
|
- `EUCLIDEAN` is the euclidean distance.
|
|
- `COSINE` is the cosine distance.
|
|
- `HAMMING` is the hamming distance.
|
|
"""
|
|
texts = [t[0] for t in text_embeddings]
|
|
embeddings = [t[1] for t in text_embeddings]
|
|
|
|
return cls._initialize_from_embeddings(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
collection_name=collection_name,
|
|
pre_delete_collection=pre_delete_collection,
|
|
distance_strategy=distance_strategy,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_existing_index(
|
|
cls: Type[Lantern],
|
|
embedding: Embeddings,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
pre_delete_collection: bool = False,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
**kwargs: Any,
|
|
) -> Lantern:
|
|
"""
|
|
Get instance of an existing Lantern store.This method will
|
|
return the instance of the store without inserting any new
|
|
embeddings
|
|
|
|
Postgres connection string is required
|
|
"Either pass it as `connection_string` parameter
|
|
or set the LANTERN_CONNECTION_STRING environment variable.
|
|
|
|
- `connection_string` is a postgres connection string.
|
|
- `embedding` is :class:`Embeddings` that will be used for
|
|
embedding the text sent. If none is sent, then the
|
|
multilingual Tensorflow Universal Sentence Encoder will be used.
|
|
- `collection_name` is the name of the collection to use. (default: langchain)
|
|
- NOTE: This is the name of the table in which embedding data will be stored
|
|
The table will be created when initializing the store (if not exists)
|
|
So, make sure the user has the right permissions to create tables.
|
|
- `ids` row ids to insert into collection.
|
|
- `pre_delete_collection` if True, will delete the collection if it exists.
|
|
(default: False)
|
|
- Useful for testing.
|
|
- `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN)
|
|
- `EUCLIDEAN` is the euclidean distance.
|
|
- `COSINE` is the cosine distance.
|
|
- `HAMMING` is the hamming distance.
|
|
"""
|
|
connection_string = cls.__get_connection_string(kwargs)
|
|
|
|
store = cls(
|
|
connection_string=connection_string,
|
|
collection_name=collection_name,
|
|
embedding_function=embedding,
|
|
pre_delete_collection=pre_delete_collection,
|
|
distance_strategy=distance_strategy,
|
|
)
|
|
|
|
return store
|
|
|
|
@classmethod
|
|
def __get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
|
|
connection_string: str = get_from_dict_or_env(
|
|
data=kwargs,
|
|
key="connection_string",
|
|
env_key="LANTERN_CONNECTION_STRING",
|
|
)
|
|
|
|
if not connection_string:
|
|
raise ValueError(
|
|
"Postgres connection string is required"
|
|
"Either pass it as `connection_string` parameter"
|
|
"or set the LANTERN_CONNECTION_STRING variable."
|
|
)
|
|
|
|
return connection_string
|
|
|
|
@classmethod
|
|
def from_documents(
|
|
cls: Type[Lantern],
|
|
documents: List[Document],
|
|
embedding: Embeddings,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> Lantern:
|
|
"""
|
|
Initialize a vector store with a set of documents.
|
|
|
|
Postgres connection string is required
|
|
"Either pass it as `connection_string` parameter
|
|
or set the LANTERN_CONNECTION_STRING environment variable.
|
|
|
|
- `connection_string` is a postgres connection string.
|
|
- `documents` is list of :class:`Document` to initialize the vector store with
|
|
- `embedding` is :class:`Embeddings` that will be used for
|
|
embedding the text sent. If none is sent, then the
|
|
multilingual Tensorflow Universal Sentence Encoder will be used.
|
|
- `collection_name` is the name of the collection to use. (default: langchain)
|
|
- NOTE: This is the name of the table in which embedding data will be stored
|
|
The table will be created when initializing the store (if not exists)
|
|
So, make sure the user has the right permissions to create tables.
|
|
- `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN)
|
|
- `EUCLIDEAN` is the euclidean distance.
|
|
- `COSINE` is the cosine distance.
|
|
- `HAMMING` is the hamming distance.
|
|
- `ids` row ids to insert into collection.
|
|
- `pre_delete_collection` if True, will delete the collection if it exists.
|
|
(default: False)
|
|
- Useful for testing.
|
|
"""
|
|
texts = [d.page_content for d in documents]
|
|
metadatas = [d.metadata for d in documents]
|
|
connection_string = cls.__get_connection_string(kwargs)
|
|
|
|
kwargs["connection_string"] = connection_string
|
|
|
|
return cls.from_texts(
|
|
texts=texts,
|
|
pre_delete_collection=pre_delete_collection,
|
|
embedding=embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
collection_name=collection_name,
|
|
distance_strategy=distance_strategy,
|
|
**kwargs,
|
|
)
|
|
|
|
def max_marginal_relevance_search_with_score_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs selected using the maximal marginal relevance with score
|
|
to embedding vector.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k (int): Number of Documents to return. Defaults to 4.
|
|
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
|
Defaults to 20.
|
|
lambda_mult (float): Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
|
|
relevance to the query and score for each.
|
|
"""
|
|
results = self.__query_collection(embedding=embedding, k=fetch_k, filter=filter)
|
|
embedding_list = [result.EmbeddingStore.embedding for result in results]
|
|
|
|
mmr_selected = maximal_marginal_relevance(
|
|
np.array(embedding, dtype=np.float32),
|
|
embedding_list,
|
|
k=k,
|
|
lambda_mult=lambda_mult,
|
|
)
|
|
|
|
candidates = self._results_to_docs_and_scores(results)
|
|
|
|
return [r for i, r in enumerate(candidates) if i in mmr_selected]
|
|
|
|
def max_marginal_relevance_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
query (str): Text to look up documents similar to.
|
|
k (int): Number of Documents to return. Defaults to 4.
|
|
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
|
Defaults to 20.
|
|
lambda_mult (float): Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List[Document]: List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
embedding = self.embedding_function.embed_query(query)
|
|
return self.max_marginal_relevance_search_by_vector(
|
|
embedding,
|
|
k=k,
|
|
fetch_k=fetch_k,
|
|
lambda_mult=lambda_mult,
|
|
filter=filter,
|
|
**kwargs,
|
|
)
|
|
|
|
def max_marginal_relevance_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[dict] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs selected using the maximal marginal relevance with score.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
query (str): Text to look up documents similar to.
|
|
k (int): Number of Documents to return. Defaults to 4.
|
|
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
|
Defaults to 20.
|
|
lambda_mult (float): Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
|
|
relevance to the query and score for each.
|
|
"""
|
|
embedding = self.embedding_function.embed_query(query)
|
|
docs = self.max_marginal_relevance_search_with_score_by_vector(
|
|
embedding=embedding,
|
|
k=k,
|
|
fetch_k=fetch_k,
|
|
lambda_mult=lambda_mult,
|
|
filter=filter,
|
|
**kwargs,
|
|
)
|
|
return docs
|
|
|
|
def max_marginal_relevance_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance
|
|
to embedding vector.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
embedding (str): Text to look up documents similar to.
|
|
k (int): Number of Documents to return. Defaults to 4.
|
|
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
|
Defaults to 20.
|
|
lambda_mult (float): Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List[Document]: List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
docs_and_scores = self.max_marginal_relevance_search_with_score_by_vector(
|
|
embedding,
|
|
k=k,
|
|
fetch_k=fetch_k,
|
|
lambda_mult=lambda_mult,
|
|
filter=filter,
|
|
**kwargs,
|
|
)
|
|
|
|
return _results_to_docs(docs_and_scores)
|