mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
14f3014cce
Thank you for contributing to LangChain! **Description:** Adds Langchain support for Nomic Embed Vision **Twitter handle:** nomic_ai,zach_nussbaum - [x] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17. --------- Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
123 lines
3.8 KiB
Python
123 lines
3.8 KiB
Python
import base64
|
|
import io
|
|
from pathlib import Path
|
|
|
|
from langchain_community.chat_models import ChatOllama
|
|
from langchain_community.vectorstores import Chroma
|
|
from langchain_core.documents import Document
|
|
from langchain_core.messages import HumanMessage
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
|
from langchain_nomic import NomicMultimodalEmbeddings
|
|
from PIL import Image
|
|
|
|
|
|
def resize_base64_image(base64_string, size=(128, 128)):
|
|
"""
|
|
Resize an image encoded as a Base64 string.
|
|
|
|
:param base64_string: A Base64 encoded string of the image to be resized.
|
|
:param size: A tuple representing the new size (width, height) for the image.
|
|
:return: A Base64 encoded string of the resized image.
|
|
"""
|
|
img_data = base64.b64decode(base64_string)
|
|
img = Image.open(io.BytesIO(img_data))
|
|
resized_img = img.resize(size, Image.LANCZOS)
|
|
buffered = io.BytesIO()
|
|
resized_img.save(buffered, format=img.format)
|
|
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
|
|
def get_resized_images(docs):
|
|
"""
|
|
Resize images from base64-encoded strings.
|
|
|
|
:param docs: A list of base64-encoded image to be resized.
|
|
:return: Dict containing a list of resized base64-encoded strings.
|
|
"""
|
|
b64_images = []
|
|
for doc in docs:
|
|
if isinstance(doc, Document):
|
|
doc = doc.page_content
|
|
# Optional: re-size image
|
|
# resized_image = resize_base64_image(doc, size=(1280, 720))
|
|
b64_images.append(doc)
|
|
return {"images": b64_images}
|
|
|
|
|
|
def img_prompt_func(data_dict, num_images=1):
|
|
"""
|
|
GPT-4V prompt for image analysis.
|
|
|
|
:param data_dict: A dict with images and a user-provided question.
|
|
:param num_images: Number of images to include in the prompt.
|
|
:return: A list containing message objects for each image and the text prompt.
|
|
"""
|
|
messages = []
|
|
if data_dict["context"]["images"]:
|
|
for image in data_dict["context"]["images"][:num_images]:
|
|
image_message = {
|
|
"type": "image_url",
|
|
"image_url": f"data:image/jpeg;base64,{image}",
|
|
}
|
|
messages.append(image_message)
|
|
text_message = {
|
|
"type": "text",
|
|
"text": (
|
|
"You are a helpful assistant that gives a description of food pictures.\n"
|
|
"Give a detailed summary of the image.\n"
|
|
"Give reccomendations for similar foods to try.\n"
|
|
),
|
|
}
|
|
messages.append(text_message)
|
|
return [HumanMessage(content=messages)]
|
|
|
|
|
|
def multi_modal_rag_chain(retriever):
|
|
"""
|
|
Multi-modal RAG chain,
|
|
|
|
:param retriever: A function that retrieves the necessary context for the model.
|
|
:return: A chain of functions representing the multi-modal RAG process.
|
|
"""
|
|
# Initialize the multi-modal Large Language Model with specific parameters
|
|
model = ChatOllama(model="bakllava", temperature=0)
|
|
|
|
# Define the RAG pipeline
|
|
chain = (
|
|
{
|
|
"context": retriever | RunnableLambda(get_resized_images),
|
|
"question": RunnablePassthrough(),
|
|
}
|
|
| RunnableLambda(img_prompt_func)
|
|
| model
|
|
| StrOutputParser()
|
|
)
|
|
|
|
return chain
|
|
|
|
|
|
# Load chroma
|
|
vectorstore_mmembd = Chroma(
|
|
collection_name="multi-modal-rag",
|
|
persist_directory=str(Path(__file__).parent.parent / "chroma_db_multi_modal"),
|
|
embedding_function=NomicMultimodalEmbeddings(
|
|
vision_model="nomic-embed-vision-v1", text_model="nomic-embed-text-v1"
|
|
),
|
|
)
|
|
|
|
# Make retriever
|
|
retriever_mmembd = vectorstore_mmembd.as_retriever()
|
|
|
|
# Create RAG chain
|
|
chain = multi_modal_rag_chain(retriever_mmembd)
|
|
|
|
|
|
# Add typing for input
|
|
class Question(BaseModel):
|
|
__root__: str
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|