mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
87e502c6bc
Co-authored-by: jacoblee93 <jacoblee93@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
148 lines
3.3 KiB
Plaintext
148 lines
3.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# MiniMax\n",
|
|
"\n",
|
|
"[MiniMax](https://api.minimax.chat/document/guides/embeddings?id=6464722084cdc277dfaa966a) offers an embeddings service.\n",
|
|
"\n",
|
|
"This example goes over how to use LangChain to interact with MiniMax Inference for text embedding."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-05-24T15:13:15.397075Z",
|
|
"start_time": "2023-05-24T15:13:15.387540Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"os.environ[\"MINIMAX_GROUP_ID\"] = \"MINIMAX_GROUP_ID\"\n",
|
|
"os.environ[\"MINIMAX_API_KEY\"] = \"MINIMAX_API_KEY\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-05-24T15:13:17.176956Z",
|
|
"start_time": "2023-05-24T15:13:15.399076Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings import MiniMaxEmbeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-05-24T15:13:17.193751Z",
|
|
"start_time": "2023-05-24T15:13:17.182053Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings = MiniMaxEmbeddings()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-05-24T15:13:17.844903Z",
|
|
"start_time": "2023-05-24T15:13:17.198751Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"query_text = \"This is a test query.\"\n",
|
|
"query_result = embeddings.embed_query(query_text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-05-24T15:13:18.605339Z",
|
|
"start_time": "2023-05-24T15:13:17.845906Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"document_text = \"This is a test document.\"\n",
|
|
"document_result = embeddings.embed_documents([document_text])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-05-24T15:13:18.620432Z",
|
|
"start_time": "2023-05-24T15:13:18.608335Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Cosine similarity between document and query: 0.1573236279277012\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"query_numpy = np.array(query_result)\n",
|
|
"document_numpy = np.array(document_result[0])\n",
|
|
"similarity = np.dot(query_numpy, document_numpy) / (\n",
|
|
" np.linalg.norm(query_numpy) * np.linalg.norm(document_numpy)\n",
|
|
")\n",
|
|
"print(f\"Cosine similarity between document and query: {similarity}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|