mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
3179ee3a56
Still don't have good "how to's", and the guides / examples section could be further pruned and improved, but this PR adds a couple examples for each of the common evaluator interfaces. - [x] Example docs for each implemented evaluator - [x] "how to make a custom evalutor" notebook for each low level APIs (comparison, string, agent) - [x] Move docs to modules area - [x] Link to reference docs for more information - [X] Still need to finish the evaluation index page - ~[ ] Don't have good data generation section~ - ~[ ] Don't have good how to section for other common scenarios / FAQs like regression testing, testing over similar inputs to measure sensitivity, etc.~
233 lines
5.7 KiB
Plaintext
233 lines
5.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"source": [
|
|
"# Pairwise Embedding Distance \n",
|
|
"\n",
|
|
"One way to measure the similarity (or dissimilarity) between two predictions on a shared or similar input is to embed the predictions and compute a vector distance between the two embeddings.<a name=\"cite_ref-1\"></a>[<sup>[1]</sup>](#cite_note-1)\n",
|
|
"\n",
|
|
"You can load the `pairwise_embedding_distance` evaluator to do this.\n",
|
|
"\n",
|
|
"**Note:** This returns a **distance** score, meaning that the lower the number, the **more** similar the outputs are, according to their embedded representation.\n",
|
|
"\n",
|
|
"Check out the reference docs for the [PairwiseEmbeddingDistanceEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain.html#langchain.evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain) for more info."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.evaluation import load_evaluator\n",
|
|
"\n",
|
|
"evaluator = load_evaluator(\"pairwise_embedding_distance\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 0.0966466944859925}"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"evaluator.evaluate_string_pairs(\n",
|
|
" prediction=\"Seattle is hot in June\", reference=\"Seattle is cool in June.\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 0.03761174337464557}"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"evaluator.evaluate_string_pairs(\n",
|
|
" prediction=\"Seattle is warm in June\", reference=\"Seattle is cool in June.\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Select the Distance Metric\n",
|
|
"\n",
|
|
"By default, the evalutor uses cosine distance. You can choose a different distance metric if you'd like. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<EmbeddingDistance.COSINE: 'cosine'>,\n",
|
|
" <EmbeddingDistance.EUCLIDEAN: 'euclidean'>,\n",
|
|
" <EmbeddingDistance.MANHATTAN: 'manhattan'>,\n",
|
|
" <EmbeddingDistance.CHEBYSHEV: 'chebyshev'>,\n",
|
|
" <EmbeddingDistance.HAMMING: 'hamming'>]"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain.evaluation import EmbeddingDistance\n",
|
|
"\n",
|
|
"list(EmbeddingDistance)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"evaluator = load_evaluator(\n",
|
|
" \"pairwise_embedding_distance\", distance_metric=EmbeddingDistance.EUCLIDEAN\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Select Embeddings to Use\n",
|
|
"\n",
|
|
"The constructor uses `OpenAI` embeddings by default, but you can configure this however you want. Below, use huggingface local embeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings import HuggingFaceEmbeddings\n",
|
|
"\n",
|
|
"embedding_model = HuggingFaceEmbeddings()\n",
|
|
"hf_evaluator = load_evaluator(\"pairwise_embedding_distance\", embeddings=embedding_model)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 0.5486443280477362}"
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"hf_evaluator.evaluate_string_pairs(\n",
|
|
" prediction=\"Seattle is hot in June\", reference=\"Seattle is cool in June.\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 0.21018880025138598}"
|
|
]
|
|
},
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"hf_evaluator.evaluate_string_pairs(\n",
|
|
" prediction=\"Seattle is warm in June\", reference=\"Seattle is cool in June.\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"<a name=\"cite_note-1\"></a><i>1. Note: When it comes to semantic similarity, this often gives better results than older string distance metrics (such as those in the `PairwiseStringDistanceEvalChain`), though it tends to be less reliable than evaluators that use the LLM directly (such as the `PairwiseStringEvalChain`) </i>"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|