langchain/libs/community/langchain_community/vectorstores/sqlitevss.py
Leonid Ganeline 7cf2d2759d
community[patch]: docstrings update (#20301)
Added missed docstrings. Format docstings to the consistent form.
2024-04-11 16:23:27 -04:00

229 lines
7.1 KiB
Python

from __future__ import annotations
import json
import logging
import warnings
from typing import (
TYPE_CHECKING,
Any,
Iterable,
List,
Optional,
Tuple,
Type,
)
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
if TYPE_CHECKING:
import sqlite3
logger = logging.getLogger(__name__)
class SQLiteVSS(VectorStore):
"""SQLite with VSS extension as a vector database.
To use, you should have the ``sqlite-vss`` python package installed.
Example:
.. code-block:: python
from langchain_community.vectorstores import SQLiteVSS
from langchain_community.embeddings.openai import OpenAIEmbeddings
...
"""
def __init__(
self,
table: str,
connection: Optional[sqlite3.Connection],
embedding: Embeddings,
db_file: str = "vss.db",
):
"""Initialize with sqlite client with vss extension."""
try:
import sqlite_vss # noqa # pylint: disable=unused-import
except ImportError:
raise ImportError(
"Could not import sqlite-vss python package. "
"Please install it with `pip install sqlite-vss`."
)
if not connection:
connection = self.create_connection(db_file)
if not isinstance(embedding, Embeddings):
warnings.warn("embeddings input must be Embeddings object.")
self._connection = connection
self._table = table
self._embedding = embedding
self.create_table_if_not_exists()
def create_table_if_not_exists(self) -> None:
self._connection.execute(
f"""
CREATE TABLE IF NOT EXISTS {self._table}
(
rowid INTEGER PRIMARY KEY AUTOINCREMENT,
text TEXT,
metadata BLOB,
text_embedding BLOB
)
;
"""
)
self._connection.execute(
f"""
CREATE VIRTUAL TABLE IF NOT EXISTS vss_{self._table} USING vss0(
text_embedding({self.get_dimensionality()})
);
"""
)
self._connection.execute(
f"""
CREATE TRIGGER IF NOT EXISTS embed_text
AFTER INSERT ON {self._table}
BEGIN
INSERT INTO vss_{self._table}(rowid, text_embedding)
VALUES (new.rowid, new.text_embedding)
;
END;
"""
)
self._connection.commit()
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Add more texts to the vectorstore index.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
kwargs: vectorstore specific parameters
"""
max_id = self._connection.execute(
f"SELECT max(rowid) as rowid FROM {self._table}"
).fetchone()["rowid"]
if max_id is None: # no text added yet
max_id = 0
embeds = self._embedding.embed_documents(list(texts))
if not metadatas:
metadatas = [{} for _ in texts]
data_input = [
(text, json.dumps(metadata), json.dumps(embed))
for text, metadata, embed in zip(texts, metadatas, embeds)
]
self._connection.executemany(
f"INSERT INTO {self._table}(text, metadata, text_embedding) "
f"VALUES (?,?,?)",
data_input,
)
self._connection.commit()
# pulling every ids we just inserted
results = self._connection.execute(
f"SELECT rowid FROM {self._table} WHERE rowid > {max_id}"
)
return [row["rowid"] for row in results]
def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
sql_query = f"""
SELECT
text,
metadata,
distance
FROM {self._table} e
INNER JOIN vss_{self._table} v on v.rowid = e.rowid
WHERE vss_search(
v.text_embedding,
vss_search_params('{json.dumps(embedding)}', {k})
)
"""
cursor = self._connection.cursor()
cursor.execute(sql_query)
results = cursor.fetchall()
documents = []
for row in results:
metadata = json.loads(row["metadata"]) or {}
doc = Document(page_content=row["text"], metadata=metadata)
documents.append((doc, row["distance"]))
return documents
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query."""
embedding = self._embedding.embed_query(query)
documents = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k
)
return [doc for doc, _ in documents]
def similarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query."""
embedding = self._embedding.embed_query(query)
documents = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k
)
return documents
def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
documents = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k
)
return [doc for doc, _ in documents]
@classmethod
def from_texts(
cls: Type[SQLiteVSS],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
table: str = "langchain",
db_file: str = "vss.db",
**kwargs: Any,
) -> SQLiteVSS:
"""Return VectorStore initialized from texts and embeddings."""
connection = cls.create_connection(db_file)
vss = cls(
table=table, connection=connection, db_file=db_file, embedding=embedding
)
vss.add_texts(texts=texts, metadatas=metadatas)
return vss
@staticmethod
def create_connection(db_file: str) -> sqlite3.Connection:
import sqlite3
import sqlite_vss
connection = sqlite3.connect(db_file)
connection.row_factory = sqlite3.Row
connection.enable_load_extension(True)
sqlite_vss.load(connection)
connection.enable_load_extension(False)
return connection
def get_dimensionality(self) -> int:
"""
Function that does a dummy embedding to figure out how many dimensions
this embedding function returns. Needed for the virtual table DDL.
"""
dummy_text = "This is a dummy text"
dummy_embedding = self._embedding.embed_query(dummy_text)
return len(dummy_embedding)