mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
245 lines
7.6 KiB
Python
245 lines
7.6 KiB
Python
"""Wrapper around LLMRails vector database."""
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
import uuid
|
|
from typing import Any, Iterable, List, Optional, Tuple
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import Field
|
|
from langchain_core.vectorstores import VectorStore, VectorStoreRetriever
|
|
|
|
|
|
class LLMRails(VectorStore):
|
|
"""Implementation of Vector Store using LLMRails.
|
|
|
|
See https://llmrails.com/
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.vectorstores import LLMRails
|
|
|
|
vectorstore = LLMRails(
|
|
api_key=llm_rails_api_key,
|
|
datastore_id=datastore_id
|
|
)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
datastore_id: Optional[str] = None,
|
|
api_key: Optional[str] = None,
|
|
):
|
|
"""Initialize with LLMRails API."""
|
|
self._datastore_id = datastore_id or os.environ.get("LLM_RAILS_DATASTORE_ID")
|
|
self._api_key = api_key or os.environ.get("LLM_RAILS_API_KEY")
|
|
if self._api_key is None:
|
|
logging.warning("Can't find Rails credentials in environment.")
|
|
|
|
self._session = requests.Session() # to reuse connections
|
|
self.datastore_id = datastore_id
|
|
self.base_url = "https://api.llmrails.com/v1"
|
|
|
|
def _get_post_headers(self) -> dict:
|
|
"""Returns headers that should be attached to each post request."""
|
|
return {"X-API-KEY": self._api_key}
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
|
|
"""
|
|
names: List[str] = []
|
|
for text in texts:
|
|
doc_name = str(uuid.uuid4())
|
|
response = self._session.post(
|
|
f"{self.base_url}/datastores/{self._datastore_id}/text",
|
|
json={"name": doc_name, "text": text},
|
|
verify=True,
|
|
headers=self._get_post_headers(),
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
logging.error(
|
|
f"Create request failed for doc_name = {doc_name} with status code "
|
|
f"{response.status_code}, reason {response.reason}, text "
|
|
f"{response.text}"
|
|
)
|
|
|
|
return names
|
|
|
|
names.append(doc_name)
|
|
|
|
return names
|
|
|
|
def add_files(
|
|
self,
|
|
files_list: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
**kwargs: Any,
|
|
) -> bool:
|
|
"""
|
|
LLMRails provides a way to add documents directly via our API where
|
|
pre-processing and chunking occurs internally in an optimal way
|
|
This method provides a way to use that API in LangChain
|
|
|
|
Args:
|
|
files_list: Iterable of strings, each representing a local file path.
|
|
Files could be text, HTML, PDF, markdown, doc/docx, ppt/pptx, etc.
|
|
see API docs for full list
|
|
|
|
Returns:
|
|
List of ids associated with each of the files indexed
|
|
"""
|
|
files = []
|
|
|
|
for file in files_list:
|
|
if not os.path.exists(file):
|
|
logging.error(f"File {file} does not exist, skipping")
|
|
continue
|
|
|
|
files.append(("file", (os.path.basename(file), open(file, "rb"))))
|
|
|
|
response = self._session.post(
|
|
f"{self.base_url}/datastores/{self._datastore_id}/file",
|
|
files=files,
|
|
verify=True,
|
|
headers=self._get_post_headers(),
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
logging.error(
|
|
f"Create request failed for datastore = {self._datastore_id} "
|
|
f"with status code {response.status_code}, reason {response.reason}, "
|
|
f"text {response.text}"
|
|
)
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
def similarity_search_with_score(
|
|
self, query: str, k: int = 5
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return LLMRails documents most similar to query, along with scores.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 5 Max 10.
|
|
alpha: parameter for hybrid search .
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each.
|
|
"""
|
|
response = self._session.post(
|
|
headers=self._get_post_headers(),
|
|
url=f"{self.base_url}/datastores/{self._datastore_id}/search",
|
|
data=json.dumps({"k": k, "text": query}),
|
|
timeout=10,
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
logging.error(
|
|
"Query failed %s",
|
|
f"(code {response.status_code}, reason {response.reason}, details "
|
|
f"{response.text})",
|
|
)
|
|
return []
|
|
|
|
results = response.json()["results"]
|
|
docs = [
|
|
(
|
|
Document(
|
|
page_content=x["text"],
|
|
metadata={
|
|
key: value
|
|
for key, value in x["metadata"].items()
|
|
if key != "score"
|
|
},
|
|
),
|
|
x["metadata"]["score"],
|
|
)
|
|
for x in results
|
|
]
|
|
|
|
return docs
|
|
|
|
def similarity_search(
|
|
self, query: str, k: int = 4, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""Return LLMRails documents most similar to query, along with scores.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 5.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query
|
|
"""
|
|
docs_and_scores = self.similarity_search_with_score(query, k=k)
|
|
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: List[str],
|
|
embedding: Optional[Embeddings] = None,
|
|
metadatas: Optional[List[dict]] = None,
|
|
**kwargs: Any,
|
|
) -> LLMRails:
|
|
"""Construct LLMRails wrapper from raw documents.
|
|
This is intended to be a quick way to get started.
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.vectorstores import LLMRails
|
|
llm_rails = LLMRails.from_texts(
|
|
texts,
|
|
datastore_id=datastore_id,
|
|
api_key=llm_rails_api_key
|
|
)
|
|
"""
|
|
# Note: LLMRails generates its own embeddings, so we ignore the provided
|
|
# embeddings (required by interface)
|
|
llm_rails = cls(**kwargs)
|
|
llm_rails.add_texts(texts)
|
|
return llm_rails
|
|
|
|
def as_retriever(self, **kwargs: Any) -> LLMRailsRetriever:
|
|
return LLMRailsRetriever(vectorstore=self, **kwargs)
|
|
|
|
|
|
class LLMRailsRetriever(VectorStoreRetriever):
|
|
"""Retriever for LLMRails."""
|
|
|
|
vectorstore: LLMRails
|
|
search_kwargs: dict = Field(default_factory=lambda: {"k": 5})
|
|
"""Search params.
|
|
k: Number of Documents to return. Defaults to 5.
|
|
alpha: parameter for hybrid search .
|
|
"""
|
|
|
|
def add_texts(self, texts: List[str]) -> None:
|
|
"""Add text to the datastore.
|
|
|
|
Args:
|
|
texts (List[str]): The text
|
|
"""
|
|
self.vectorstore.add_texts(texts)
|