mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
731 lines
29 KiB
Python
731 lines
29 KiB
Python
from hashlib import md5
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.graphs.graph_document import GraphDocument
|
|
from langchain_community.graphs.graph_store import GraphStore
|
|
|
|
BASE_ENTITY_LABEL = "__Entity__"
|
|
EXCLUDED_LABELS = ["_Bloom_Perspective_", "_Bloom_Scene_"]
|
|
EXCLUDED_RELS = ["_Bloom_HAS_SCENE_"]
|
|
EXHAUSTIVE_SEARCH_LIMIT = 10000
|
|
LIST_LIMIT = 128
|
|
# Threshold for returning all available prop values in graph schema
|
|
DISTINCT_VALUE_LIMIT = 10
|
|
|
|
node_properties_query = """
|
|
CALL apoc.meta.data()
|
|
YIELD label, other, elementType, type, property
|
|
WHERE NOT type = "RELATIONSHIP" AND elementType = "node"
|
|
AND NOT label IN $EXCLUDED_LABELS
|
|
WITH label AS nodeLabels, collect({property:property, type:type}) AS properties
|
|
RETURN {labels: nodeLabels, properties: properties} AS output
|
|
|
|
"""
|
|
|
|
rel_properties_query = """
|
|
CALL apoc.meta.data()
|
|
YIELD label, other, elementType, type, property
|
|
WHERE NOT type = "RELATIONSHIP" AND elementType = "relationship"
|
|
AND NOT label in $EXCLUDED_LABELS
|
|
WITH label AS nodeLabels, collect({property:property, type:type}) AS properties
|
|
RETURN {type: nodeLabels, properties: properties} AS output
|
|
"""
|
|
|
|
rel_query = """
|
|
CALL apoc.meta.data()
|
|
YIELD label, other, elementType, type, property
|
|
WHERE type = "RELATIONSHIP" AND elementType = "node"
|
|
UNWIND other AS other_node
|
|
WITH * WHERE NOT label IN $EXCLUDED_LABELS
|
|
AND NOT other_node IN $EXCLUDED_LABELS
|
|
RETURN {start: label, type: property, end: toString(other_node)} AS output
|
|
"""
|
|
|
|
include_docs_query = (
|
|
"MERGE (d:Document {id:$document.metadata.id}) "
|
|
"SET d.text = $document.page_content "
|
|
"SET d += $document.metadata "
|
|
"WITH d "
|
|
)
|
|
|
|
|
|
def clean_string_values(text: str) -> str:
|
|
return text.replace("\n", " ").replace("\r", " ")
|
|
|
|
|
|
def value_sanitize(d: Any) -> Any:
|
|
"""Sanitize the input dictionary or list.
|
|
|
|
Sanitizes the input by removing embedding-like values,
|
|
lists with more than 128 elements, that are mostly irrelevant for
|
|
generating answers in a LLM context. These properties, if left in
|
|
results, can occupy significant context space and detract from
|
|
the LLM's performance by introducing unnecessary noise and cost.
|
|
"""
|
|
if isinstance(d, dict):
|
|
new_dict = {}
|
|
for key, value in d.items():
|
|
if isinstance(value, dict):
|
|
sanitized_value = value_sanitize(value)
|
|
if (
|
|
sanitized_value is not None
|
|
): # Check if the sanitized value is not None
|
|
new_dict[key] = sanitized_value
|
|
elif isinstance(value, list):
|
|
if len(value) < LIST_LIMIT:
|
|
sanitized_value = value_sanitize(value)
|
|
if (
|
|
sanitized_value is not None
|
|
): # Check if the sanitized value is not None
|
|
new_dict[key] = sanitized_value
|
|
# Do not include the key if the list is oversized
|
|
else:
|
|
new_dict[key] = value
|
|
return new_dict
|
|
elif isinstance(d, list):
|
|
if len(d) < LIST_LIMIT:
|
|
return [
|
|
value_sanitize(item) for item in d if value_sanitize(item) is not None
|
|
]
|
|
else:
|
|
return None
|
|
else:
|
|
return d
|
|
|
|
|
|
def _get_node_import_query(baseEntityLabel: bool, include_source: bool) -> str:
|
|
if baseEntityLabel:
|
|
return (
|
|
f"{include_docs_query if include_source else ''}"
|
|
"UNWIND $data AS row "
|
|
f"MERGE (source:`{BASE_ENTITY_LABEL}` {{id: row.id}}) "
|
|
"SET source += row.properties "
|
|
f"{'MERGE (d)-[:MENTIONS]->(source) ' if include_source else ''}"
|
|
"WITH source, row "
|
|
"CALL apoc.create.addLabels( source, [row.type] ) YIELD node "
|
|
"RETURN distinct 'done' AS result"
|
|
)
|
|
else:
|
|
return (
|
|
f"{include_docs_query if include_source else ''}"
|
|
"UNWIND $data AS row "
|
|
"CALL apoc.merge.node([row.type], {id: row.id}, "
|
|
"row.properties, {}) YIELD node "
|
|
f"{'MERGE (d)-[:MENTIONS]->(node) ' if include_source else ''}"
|
|
"RETURN distinct 'done' AS result"
|
|
)
|
|
|
|
|
|
def _get_rel_import_query(baseEntityLabel: bool) -> str:
|
|
if baseEntityLabel:
|
|
return (
|
|
"UNWIND $data AS row "
|
|
f"MERGE (source:`{BASE_ENTITY_LABEL}` {{id: row.source}}) "
|
|
f"MERGE (target:`{BASE_ENTITY_LABEL}` {{id: row.target}}) "
|
|
"WITH source, target, row "
|
|
"CALL apoc.merge.relationship(source, row.type, "
|
|
"{}, row.properties, target) YIELD rel "
|
|
"RETURN distinct 'done'"
|
|
)
|
|
else:
|
|
return (
|
|
"UNWIND $data AS row "
|
|
"CALL apoc.merge.node([row.source_label], {id: row.source},"
|
|
"{}, {}) YIELD node as source "
|
|
"CALL apoc.merge.node([row.target_label], {id: row.target},"
|
|
"{}, {}) YIELD node as target "
|
|
"CALL apoc.merge.relationship(source, row.type, "
|
|
"{}, row.properties, target) YIELD rel "
|
|
"RETURN distinct 'done'"
|
|
)
|
|
|
|
|
|
def _format_schema(schema: Dict, is_enhanced: bool) -> str:
|
|
formatted_node_props = []
|
|
formatted_rel_props = []
|
|
if is_enhanced:
|
|
# Enhanced formatting for nodes
|
|
for node_type, properties in schema["node_props"].items():
|
|
formatted_node_props.append(f"- **{node_type}**")
|
|
for prop in properties:
|
|
example = ""
|
|
if prop["type"] == "STRING":
|
|
if prop.get("distinct_count", 11) > DISTINCT_VALUE_LIMIT:
|
|
example = (
|
|
f'Example: "{clean_string_values(prop["values"][0])}"'
|
|
if prop["values"]
|
|
else ""
|
|
)
|
|
else: # If less than 10 possible values return all
|
|
example = (
|
|
(
|
|
"Available options: "
|
|
f'{[clean_string_values(el) for el in prop["values"]]}'
|
|
)
|
|
if prop["values"]
|
|
else ""
|
|
)
|
|
|
|
elif prop["type"] in [
|
|
"INTEGER",
|
|
"FLOAT",
|
|
"DATE",
|
|
"DATE_TIME",
|
|
"LOCAL_DATE_TIME",
|
|
]:
|
|
if prop.get("min") is not None:
|
|
example = f'Min: {prop["min"]}, Max: {prop["max"]}'
|
|
else:
|
|
example = (
|
|
f'Example: "{prop["values"][0]}"'
|
|
if prop.get("values")
|
|
else ""
|
|
)
|
|
elif prop["type"] == "LIST":
|
|
# Skip embeddings
|
|
if not prop.get("min_size") or prop["min_size"] > LIST_LIMIT:
|
|
continue
|
|
example = (
|
|
f'Min Size: {prop["min_size"]}, Max Size: {prop["max_size"]}'
|
|
)
|
|
formatted_node_props.append(
|
|
f" - `{prop['property']}`: {prop['type']} {example}"
|
|
)
|
|
|
|
# Enhanced formatting for relationships
|
|
for rel_type, properties in schema["rel_props"].items():
|
|
formatted_rel_props.append(f"- **{rel_type}**")
|
|
for prop in properties:
|
|
example = ""
|
|
if prop["type"] == "STRING":
|
|
if prop.get("distinct_count", 11) > DISTINCT_VALUE_LIMIT:
|
|
example = (
|
|
f'Example: "{clean_string_values(prop["values"][0])}"'
|
|
if prop["values"]
|
|
else ""
|
|
)
|
|
else: # If less than 10 possible values return all
|
|
example = (
|
|
(
|
|
"Available options: "
|
|
f'{[clean_string_values(el) for el in prop["values"]]}'
|
|
)
|
|
if prop["values"]
|
|
else ""
|
|
)
|
|
elif prop["type"] in [
|
|
"INTEGER",
|
|
"FLOAT",
|
|
"DATE",
|
|
"DATE_TIME",
|
|
"LOCAL_DATE_TIME",
|
|
]:
|
|
if prop.get("min"): # If we have min/max
|
|
example = f'Min: {prop["min"]}, Max: {prop["max"]}'
|
|
else: # return a single value
|
|
example = (
|
|
f'Example: "{prop["values"][0]}"' if prop["values"] else ""
|
|
)
|
|
elif prop["type"] == "LIST":
|
|
# Skip embeddings
|
|
if prop["min_size"] > LIST_LIMIT:
|
|
continue
|
|
example = (
|
|
f'Min Size: {prop["min_size"]}, Max Size: {prop["max_size"]}'
|
|
)
|
|
formatted_rel_props.append(
|
|
f" - `{prop['property']}: {prop['type']}` {example}"
|
|
)
|
|
else:
|
|
# Format node properties
|
|
for label, props in schema["node_props"].items():
|
|
props_str = ", ".join(
|
|
[f"{prop['property']}: {prop['type']}" for prop in props]
|
|
)
|
|
formatted_node_props.append(f"{label} {{{props_str}}}")
|
|
|
|
# Format relationship properties using structured_schema
|
|
for type, props in schema["rel_props"].items():
|
|
props_str = ", ".join(
|
|
[f"{prop['property']}: {prop['type']}" for prop in props]
|
|
)
|
|
formatted_rel_props.append(f"{type} {{{props_str}}}")
|
|
|
|
# Format relationships
|
|
formatted_rels = [
|
|
f"(:{el['start']})-[:{el['type']}]->(:{el['end']})"
|
|
for el in schema["relationships"]
|
|
]
|
|
|
|
return "\n".join(
|
|
[
|
|
"Node properties:",
|
|
"\n".join(formatted_node_props),
|
|
"Relationship properties:",
|
|
"\n".join(formatted_rel_props),
|
|
"The relationships:",
|
|
"\n".join(formatted_rels),
|
|
]
|
|
)
|
|
|
|
|
|
class Neo4jGraph(GraphStore):
|
|
"""Neo4j database wrapper for various graph operations.
|
|
|
|
Parameters:
|
|
url (Optional[str]): The URL of the Neo4j database server.
|
|
username (Optional[str]): The username for database authentication.
|
|
password (Optional[str]): The password for database authentication.
|
|
database (str): The name of the database to connect to. Default is 'neo4j'.
|
|
timeout (Optional[float]): The timeout for transactions in seconds.
|
|
Useful for terminating long-running queries.
|
|
By default, there is no timeout set.
|
|
sanitize (bool): A flag to indicate whether to remove lists with
|
|
more than 128 elements from results. Useful for removing
|
|
embedding-like properties from database responses. Default is False.
|
|
refresh_schema (bool): A flag whether to refresh schema information
|
|
at initialization. Default is True.
|
|
enhanced_schema (bool): A flag whether to scan the database for
|
|
example values and use them in the graph schema. Default is False.
|
|
driver_config (Dict): Configuration passed to Neo4j Driver.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
url: Optional[str] = None,
|
|
username: Optional[str] = None,
|
|
password: Optional[str] = None,
|
|
database: Optional[str] = None,
|
|
timeout: Optional[float] = None,
|
|
sanitize: bool = False,
|
|
refresh_schema: bool = True,
|
|
*,
|
|
driver_config: Optional[Dict] = None,
|
|
enhanced_schema: bool = False,
|
|
) -> None:
|
|
"""Create a new Neo4j graph wrapper instance."""
|
|
try:
|
|
import neo4j
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import neo4j python package. "
|
|
"Please install it with `pip install neo4j`."
|
|
)
|
|
|
|
url = get_from_dict_or_env({"url": url}, "url", "NEO4J_URI")
|
|
username = get_from_dict_or_env(
|
|
{"username": username}, "username", "NEO4J_USERNAME"
|
|
)
|
|
password = get_from_dict_or_env(
|
|
{"password": password}, "password", "NEO4J_PASSWORD"
|
|
)
|
|
database = get_from_dict_or_env(
|
|
{"database": database}, "database", "NEO4J_DATABASE", "neo4j"
|
|
)
|
|
|
|
self._driver = neo4j.GraphDatabase.driver(
|
|
url, auth=(username, password), **(driver_config or {})
|
|
)
|
|
self._database = database
|
|
self.timeout = timeout
|
|
self.sanitize = sanitize
|
|
self._enhanced_schema = enhanced_schema
|
|
self.schema: str = ""
|
|
self.structured_schema: Dict[str, Any] = {}
|
|
# Verify connection
|
|
try:
|
|
self._driver.verify_connectivity()
|
|
except neo4j.exceptions.ServiceUnavailable:
|
|
raise ValueError(
|
|
"Could not connect to Neo4j database. "
|
|
"Please ensure that the url is correct"
|
|
)
|
|
except neo4j.exceptions.AuthError:
|
|
raise ValueError(
|
|
"Could not connect to Neo4j database. "
|
|
"Please ensure that the username and password are correct"
|
|
)
|
|
# Set schema
|
|
if refresh_schema:
|
|
try:
|
|
self.refresh_schema()
|
|
except neo4j.exceptions.ClientError as e:
|
|
if e.code == "Neo.ClientError.Procedure.ProcedureNotFound":
|
|
raise ValueError(
|
|
"Could not use APOC procedures. "
|
|
"Please ensure the APOC plugin is installed in Neo4j and that "
|
|
"'apoc.meta.data()' is allowed in Neo4j configuration "
|
|
)
|
|
raise e
|
|
|
|
@property
|
|
def get_schema(self) -> str:
|
|
"""Returns the schema of the Graph"""
|
|
return self.schema
|
|
|
|
@property
|
|
def get_structured_schema(self) -> Dict[str, Any]:
|
|
"""Returns the structured schema of the Graph"""
|
|
return self.structured_schema
|
|
|
|
def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]:
|
|
"""Query Neo4j database."""
|
|
from neo4j import Query
|
|
from neo4j.exceptions import CypherSyntaxError
|
|
|
|
with self._driver.session(database=self._database) as session:
|
|
try:
|
|
data = session.run(Query(text=query, timeout=self.timeout), params)
|
|
json_data = [r.data() for r in data]
|
|
if self.sanitize:
|
|
json_data = [value_sanitize(el) for el in json_data]
|
|
return json_data
|
|
except CypherSyntaxError as e:
|
|
raise ValueError(f"Generated Cypher Statement is not valid\n{e}")
|
|
|
|
def refresh_schema(self) -> None:
|
|
"""
|
|
Refreshes the Neo4j graph schema information.
|
|
"""
|
|
from neo4j.exceptions import ClientError
|
|
|
|
node_properties = [
|
|
el["output"]
|
|
for el in self.query(
|
|
node_properties_query,
|
|
params={"EXCLUDED_LABELS": EXCLUDED_LABELS + [BASE_ENTITY_LABEL]},
|
|
)
|
|
]
|
|
rel_properties = [
|
|
el["output"]
|
|
for el in self.query(
|
|
rel_properties_query, params={"EXCLUDED_LABELS": EXCLUDED_RELS}
|
|
)
|
|
]
|
|
relationships = [
|
|
el["output"]
|
|
for el in self.query(
|
|
rel_query,
|
|
params={"EXCLUDED_LABELS": EXCLUDED_LABELS + [BASE_ENTITY_LABEL]},
|
|
)
|
|
]
|
|
|
|
# Get constraints & indexes
|
|
try:
|
|
constraint = self.query("SHOW CONSTRAINTS")
|
|
index = self.query(
|
|
"CALL apoc.schema.nodes() YIELD label, properties, type, size, "
|
|
"valuesSelectivity WHERE type = 'RANGE' RETURN *, "
|
|
"size * valuesSelectivity as distinctValues"
|
|
)
|
|
except (
|
|
ClientError
|
|
): # Read-only user might not have access to schema information
|
|
constraint = []
|
|
index = []
|
|
|
|
self.structured_schema = {
|
|
"node_props": {el["labels"]: el["properties"] for el in node_properties},
|
|
"rel_props": {el["type"]: el["properties"] for el in rel_properties},
|
|
"relationships": relationships,
|
|
"metadata": {"constraint": constraint, "index": index},
|
|
}
|
|
if self._enhanced_schema:
|
|
schema_counts = self.query(
|
|
"CALL apoc.meta.graphSample() YIELD nodes, relationships "
|
|
"RETURN nodes, [rel in relationships | {name:apoc.any.property"
|
|
"(rel, 'type'), count: apoc.any.property(rel, 'count')}]"
|
|
" AS relationships"
|
|
)
|
|
# Update node info
|
|
for node in schema_counts[0]["nodes"]:
|
|
# Skip bloom labels
|
|
if node["name"] in EXCLUDED_LABELS:
|
|
continue
|
|
node_props = self.structured_schema["node_props"].get(node["name"])
|
|
if not node_props: # The node has no properties
|
|
continue
|
|
enhanced_cypher = self._enhanced_schema_cypher(
|
|
node["name"], node_props, node["count"] < EXHAUSTIVE_SEARCH_LIMIT
|
|
)
|
|
enhanced_info = self.query(enhanced_cypher)[0]["output"]
|
|
for prop in node_props:
|
|
if prop["property"] in enhanced_info:
|
|
prop.update(enhanced_info[prop["property"]])
|
|
# Update rel info
|
|
for rel in schema_counts[0]["relationships"]:
|
|
# Skip bloom labels
|
|
if rel["name"] in EXCLUDED_RELS:
|
|
continue
|
|
rel_props = self.structured_schema["rel_props"].get(rel["name"])
|
|
if not rel_props: # The rel has no properties
|
|
continue
|
|
enhanced_cypher = self._enhanced_schema_cypher(
|
|
rel["name"],
|
|
rel_props,
|
|
rel["count"] < EXHAUSTIVE_SEARCH_LIMIT,
|
|
is_relationship=True,
|
|
)
|
|
enhanced_info = self.query(enhanced_cypher)[0]["output"]
|
|
for prop in rel_props:
|
|
if prop["property"] in enhanced_info:
|
|
prop.update(enhanced_info[prop["property"]])
|
|
|
|
schema = _format_schema(self.structured_schema, self._enhanced_schema)
|
|
|
|
self.schema = schema
|
|
|
|
def add_graph_documents(
|
|
self,
|
|
graph_documents: List[GraphDocument],
|
|
include_source: bool = False,
|
|
baseEntityLabel: bool = False,
|
|
) -> None:
|
|
"""
|
|
This method constructs nodes and relationships in the graph based on the
|
|
provided GraphDocument objects.
|
|
|
|
Parameters:
|
|
- graph_documents (List[GraphDocument]): A list of GraphDocument objects
|
|
that contain the nodes and relationships to be added to the graph. Each
|
|
GraphDocument should encapsulate the structure of part of the graph,
|
|
including nodes, relationships, and the source document information.
|
|
- include_source (bool, optional): If True, stores the source document
|
|
and links it to nodes in the graph using the MENTIONS relationship.
|
|
This is useful for tracing back the origin of data. Merges source
|
|
documents based on the `id` property from the source document metadata
|
|
if available; otherwise it calculates the MD5 hash of `page_content`
|
|
for merging process. Defaults to False.
|
|
- baseEntityLabel (bool, optional): If True, each newly created node
|
|
gets a secondary __Entity__ label, which is indexed and improves import
|
|
speed and performance. Defaults to False.
|
|
"""
|
|
if baseEntityLabel: # Check if constraint already exists
|
|
constraint_exists = any(
|
|
[
|
|
el["labelsOrTypes"] == [BASE_ENTITY_LABEL]
|
|
and el["properties"] == ["id"]
|
|
for el in self.structured_schema.get("metadata", {}).get(
|
|
"constraint"
|
|
)
|
|
]
|
|
)
|
|
if not constraint_exists:
|
|
# Create constraint
|
|
self.query(
|
|
f"CREATE CONSTRAINT IF NOT EXISTS FOR (b:{BASE_ENTITY_LABEL}) "
|
|
"REQUIRE b.id IS UNIQUE;"
|
|
)
|
|
self.refresh_schema() # Refresh constraint information
|
|
|
|
node_import_query = _get_node_import_query(baseEntityLabel, include_source)
|
|
rel_import_query = _get_rel_import_query(baseEntityLabel)
|
|
for document in graph_documents:
|
|
if not document.source.metadata.get("id"):
|
|
document.source.metadata["id"] = md5(
|
|
document.source.page_content.encode("utf-8")
|
|
).hexdigest()
|
|
|
|
# Import nodes
|
|
self.query(
|
|
node_import_query,
|
|
{
|
|
"data": [el.__dict__ for el in document.nodes],
|
|
"document": document.source.__dict__,
|
|
},
|
|
)
|
|
# Import relationships
|
|
self.query(
|
|
rel_import_query,
|
|
{
|
|
"data": [
|
|
{
|
|
"source": el.source.id,
|
|
"source_label": el.source.type,
|
|
"target": el.target.id,
|
|
"target_label": el.target.type,
|
|
"type": el.type.replace(" ", "_").upper(),
|
|
"properties": el.properties,
|
|
}
|
|
for el in document.relationships
|
|
]
|
|
},
|
|
)
|
|
|
|
def _enhanced_schema_cypher(
|
|
self,
|
|
label_or_type: str,
|
|
properties: List[Dict[str, Any]],
|
|
exhaustive: bool,
|
|
is_relationship: bool = False,
|
|
) -> str:
|
|
if is_relationship:
|
|
match_clause = f"MATCH ()-[n:{label_or_type}]->()"
|
|
else:
|
|
match_clause = f"MATCH (n:{label_or_type})"
|
|
|
|
with_clauses = []
|
|
return_clauses = []
|
|
output_dict = {}
|
|
if exhaustive:
|
|
for prop in properties:
|
|
prop_name = prop["property"]
|
|
prop_type = prop["type"]
|
|
if prop_type == "STRING":
|
|
with_clauses.append(
|
|
(
|
|
f"collect(distinct substring(n.`{prop_name}`, 0, 50)) "
|
|
f"AS `{prop_name}_values`"
|
|
)
|
|
)
|
|
return_clauses.append(
|
|
(
|
|
f"values:`{prop_name}_values`[..{DISTINCT_VALUE_LIMIT}],"
|
|
f" distinct_count: size(`{prop_name}_values`)"
|
|
)
|
|
)
|
|
elif prop_type in [
|
|
"INTEGER",
|
|
"FLOAT",
|
|
"DATE",
|
|
"DATE_TIME",
|
|
"LOCAL_DATE_TIME",
|
|
]:
|
|
with_clauses.append(f"min(n.`{prop_name}`) AS `{prop_name}_min`")
|
|
with_clauses.append(f"max(n.`{prop_name}`) AS `{prop_name}_max`")
|
|
with_clauses.append(
|
|
f"count(distinct n.`{prop_name}`) AS `{prop_name}_distinct`"
|
|
)
|
|
return_clauses.append(
|
|
(
|
|
f"min: toString(`{prop_name}_min`), "
|
|
f"max: toString(`{prop_name}_max`), "
|
|
f"distinct_count: `{prop_name}_distinct`"
|
|
)
|
|
)
|
|
elif prop_type == "LIST":
|
|
with_clauses.append(
|
|
(
|
|
f"min(size(n.`{prop_name}`)) AS `{prop_name}_size_min`, "
|
|
f"max(size(n.`{prop_name}`)) AS `{prop_name}_size_max`"
|
|
)
|
|
)
|
|
return_clauses.append(
|
|
f"min_size: `{prop_name}_size_min`, "
|
|
f"max_size: `{prop_name}_size_max`"
|
|
)
|
|
elif prop_type in ["BOOLEAN", "POINT", "DURATION"]:
|
|
continue
|
|
output_dict[prop_name] = "{" + return_clauses.pop() + "}"
|
|
else:
|
|
# Just sample 5 random nodes
|
|
match_clause += " WITH n LIMIT 5"
|
|
for prop in properties:
|
|
prop_name = prop["property"]
|
|
prop_type = prop["type"]
|
|
|
|
# Check if indexed property, we can still do exhaustive
|
|
prop_index = [
|
|
el
|
|
for el in self.structured_schema["metadata"]["index"]
|
|
if el["label"] == label_or_type
|
|
and el["properties"] == [prop_name]
|
|
and el["type"] == "RANGE"
|
|
]
|
|
if prop_type == "STRING":
|
|
if (
|
|
prop_index
|
|
and prop_index[0].get("size") > 0
|
|
and prop_index[0].get("distinctValues") <= DISTINCT_VALUE_LIMIT
|
|
):
|
|
distinct_values = self.query(
|
|
f"CALL apoc.schema.properties.distinct("
|
|
f"'{label_or_type}', '{prop_name}') YIELD value"
|
|
)[0]["value"]
|
|
return_clauses.append(
|
|
(
|
|
f"values: {distinct_values},"
|
|
f" distinct_count: {len(distinct_values)}"
|
|
)
|
|
)
|
|
else:
|
|
with_clauses.append(
|
|
(
|
|
f"collect(distinct substring(n.`{prop_name}`, 0, 50)) "
|
|
f"AS `{prop_name}_values`"
|
|
)
|
|
)
|
|
return_clauses.append(f"values: `{prop_name}_values`")
|
|
elif prop_type in [
|
|
"INTEGER",
|
|
"FLOAT",
|
|
"DATE",
|
|
"DATE_TIME",
|
|
"LOCAL_DATE_TIME",
|
|
]:
|
|
if not prop_index:
|
|
with_clauses.append(
|
|
f"collect(distinct toString(n.`{prop_name}`)) "
|
|
f"AS `{prop_name}_values`"
|
|
)
|
|
return_clauses.append(f"values: `{prop_name}_values`")
|
|
else:
|
|
with_clauses.append(
|
|
f"min(n.`{prop_name}`) AS `{prop_name}_min`"
|
|
)
|
|
with_clauses.append(
|
|
f"max(n.`{prop_name}`) AS `{prop_name}_max`"
|
|
)
|
|
with_clauses.append(
|
|
f"count(distinct n.`{prop_name}`) AS `{prop_name}_distinct`"
|
|
)
|
|
return_clauses.append(
|
|
(
|
|
f"min: toString(`{prop_name}_min`), "
|
|
f"max: toString(`{prop_name}_max`), "
|
|
f"distinct_count: `{prop_name}_distinct`"
|
|
)
|
|
)
|
|
|
|
elif prop_type == "LIST":
|
|
with_clauses.append(
|
|
(
|
|
f"min(size(n.`{prop_name}`)) AS `{prop_name}_size_min`, "
|
|
f"max(size(n.`{prop_name}`)) AS `{prop_name}_size_max`"
|
|
)
|
|
)
|
|
return_clauses.append(
|
|
(
|
|
f"min_size: `{prop_name}_size_min`, "
|
|
f"max_size: `{prop_name}_size_max`"
|
|
)
|
|
)
|
|
elif prop_type in ["BOOLEAN", "POINT", "DURATION"]:
|
|
continue
|
|
|
|
output_dict[prop_name] = "{" + return_clauses.pop() + "}"
|
|
|
|
with_clause = "WITH " + ",\n ".join(with_clauses)
|
|
return_clause = (
|
|
"RETURN {"
|
|
+ ", ".join(f"`{k}`: {v}" for k, v in output_dict.items())
|
|
+ "} AS output"
|
|
)
|
|
|
|
# Combine all parts of the Cypher query
|
|
cypher_query = "\n".join([match_clause, with_clause, return_clause])
|
|
return cypher_query
|