langchain/libs/community/langchain_community/embeddings/huggingface_hub.py
Raunak c0773ab329
community[patch]: Fixed 'coroutine' object is not subscriptable error (#15986)
- **Description:** Added parenthesis in return statement of
aembed_query() funtion to fix 'coroutine' object is not subscriptable
error.
  - **Dependencies:** NA

Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
2024-01-15 10:34:10 -08:00

149 lines
5.0 KiB
Python

import json
import os
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
VALID_TASKS = ("feature-extraction",)
class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
"""HuggingFaceHub embedding models.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceHubEmbeddings
model = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceHubEmbeddings(
model=model,
task="feature-extraction",
huggingfacehub_api_token="my-api-key",
)
"""
client: Any #: :meta private:
async_client: Any #: :meta private:
model: Optional[str] = None
"""Model name to use."""
repo_id: Optional[str] = None
"""Huggingfacehub repository id, for backward compatibility."""
task: Optional[str] = "feature-extraction"
"""Task to call the model with."""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
huggingfacehub_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = values["huggingfacehub_api_token"] or os.getenv(
"HUGGINGFACEHUB_API_TOKEN"
)
try:
from huggingface_hub import AsyncInferenceClient, InferenceClient
if values["model"]:
values["repo_id"] = values["model"]
elif values["repo_id"]:
values["model"] = values["repo_id"]
else:
values["model"] = DEFAULT_MODEL
values["repo_id"] = DEFAULT_MODEL
client = InferenceClient(
model=values["model"],
token=huggingfacehub_api_token,
)
async_client = AsyncInferenceClient(
model=values["model"],
token=huggingfacehub_api_token,
)
if values["task"] not in VALID_TASKS:
raise ValueError(
f"Got invalid task {values['task']}, "
f"currently only {VALID_TASKS} are supported"
)
values["client"] = client
values["async_client"] = async_client
except ImportError:
raise ImportError(
"Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`."
)
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts]
_model_kwargs = self.model_kwargs or {}
responses = self.client.post(
json={"inputs": texts, "parameters": _model_kwargs}, task=self.task
)
return json.loads(responses.decode())
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Async Call to HuggingFaceHub's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts]
_model_kwargs = self.model_kwargs or {}
responses = await self.async_client.post(
json={"inputs": texts, "parameters": _model_kwargs}, task=self.task
)
return json.loads(responses.decode())
def embed_query(self, text: str) -> List[float]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
response = self.embed_documents([text])[0]
return response
async def aembed_query(self, text: str) -> List[float]:
"""Async Call to HuggingFaceHub's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
response = (await self.aembed_documents([text]))[0]
return response