mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
dac2e0165a
- **Description:** Added integration with [GigaChat](https://developers.sber.ru/portal/products/gigachat) embeddings. Also added support for extra fields in GigaChat LLM and fixed docs.
188 lines
5.8 KiB
Python
188 lines
5.8 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from functools import cached_property
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MAX_BATCH_SIZE_CHARS = 1000000
|
|
MAX_BATCH_SIZE_PARTS = 90
|
|
|
|
|
|
class GigaChatEmbeddings(BaseModel, Embeddings):
|
|
"""GigaChat Embeddings models.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
from langchain_community.embeddings.gigachat import GigaChatEmbeddings
|
|
|
|
embeddings = GigaChatEmbeddings(
|
|
credentials=..., scope=..., verify_ssl_certs=False
|
|
)
|
|
"""
|
|
|
|
base_url: Optional[str] = None
|
|
""" Base API URL """
|
|
auth_url: Optional[str] = None
|
|
""" Auth URL """
|
|
credentials: Optional[str] = None
|
|
""" Auth Token """
|
|
scope: Optional[str] = None
|
|
""" Permission scope for access token """
|
|
|
|
access_token: Optional[str] = None
|
|
""" Access token for GigaChat """
|
|
|
|
model: Optional[str] = None
|
|
"""Model name to use."""
|
|
user: Optional[str] = None
|
|
""" Username for authenticate """
|
|
password: Optional[str] = None
|
|
""" Password for authenticate """
|
|
|
|
timeout: Optional[float] = 600
|
|
""" Timeout for request. By default it works for long requests. """
|
|
verify_ssl_certs: Optional[bool] = None
|
|
""" Check certificates for all requests """
|
|
|
|
ca_bundle_file: Optional[str] = None
|
|
cert_file: Optional[str] = None
|
|
key_file: Optional[str] = None
|
|
key_file_password: Optional[str] = None
|
|
# Support for connection to GigaChat through SSL certificates
|
|
|
|
@cached_property
|
|
def _client(self) -> Any:
|
|
"""Returns GigaChat API client"""
|
|
import gigachat
|
|
|
|
return gigachat.GigaChat(
|
|
base_url=self.base_url,
|
|
auth_url=self.auth_url,
|
|
credentials=self.credentials,
|
|
scope=self.scope,
|
|
access_token=self.access_token,
|
|
model=self.model,
|
|
user=self.user,
|
|
password=self.password,
|
|
timeout=self.timeout,
|
|
verify_ssl_certs=self.verify_ssl_certs,
|
|
ca_bundle_file=self.ca_bundle_file,
|
|
cert_file=self.cert_file,
|
|
key_file=self.key_file,
|
|
key_file_password=self.key_file_password,
|
|
)
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate authenticate data in environment and python package is installed."""
|
|
try:
|
|
import gigachat # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import gigachat python package. "
|
|
"Please install it with `pip install gigachat`."
|
|
)
|
|
fields = set(cls.__fields__.keys())
|
|
diff = set(values.keys()) - fields
|
|
if diff:
|
|
logger.warning(f"Extra fields {diff} in GigaChat class")
|
|
return values
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed documents using a GigaChat embeddings models.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
result: List[List[float]] = []
|
|
size = 0
|
|
local_texts = []
|
|
embed_kwargs = {}
|
|
if self.model is not None:
|
|
embed_kwargs["model"] = self.model
|
|
for text in texts:
|
|
local_texts.append(text)
|
|
size += len(text)
|
|
if size > MAX_BATCH_SIZE_CHARS or len(local_texts) > MAX_BATCH_SIZE_PARTS:
|
|
for embedding in self._client.embeddings(
|
|
texts=local_texts, **embed_kwargs
|
|
).data:
|
|
result.append(embedding.embedding)
|
|
size = 0
|
|
local_texts = []
|
|
# Call for last iteration
|
|
if local_texts:
|
|
for embedding in self._client.embeddings(
|
|
texts=local_texts, **embed_kwargs
|
|
).data:
|
|
result.append(embedding.embedding)
|
|
|
|
return result
|
|
|
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed documents using a GigaChat embeddings models.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
result: List[List[float]] = []
|
|
size = 0
|
|
local_texts = []
|
|
embed_kwargs = {}
|
|
if self.model is not None:
|
|
embed_kwargs["model"] = self.model
|
|
for text in texts:
|
|
local_texts.append(text)
|
|
size += len(text)
|
|
if size > MAX_BATCH_SIZE_CHARS or len(local_texts) > MAX_BATCH_SIZE_PARTS:
|
|
embeddings = await self._client.aembeddings(
|
|
texts=local_texts, **embed_kwargs
|
|
)
|
|
for embedding in embeddings.data:
|
|
result.append(embedding.embedding)
|
|
size = 0
|
|
local_texts = []
|
|
# Call for last iteration
|
|
if local_texts:
|
|
embeddings = await self._client.aembeddings(
|
|
texts=local_texts, **embed_kwargs
|
|
)
|
|
for embedding in embeddings.data:
|
|
result.append(embedding.embedding)
|
|
|
|
return result
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed a query using a GigaChat embeddings models.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
return self.embed_documents(texts=[text])[0]
|
|
|
|
async def aembed_query(self, text: str) -> List[float]:
|
|
"""Embed a query using a GigaChat embeddings models.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
docs = await self.aembed_documents(texts=[text])
|
|
return docs[0]
|