langchain/libs/community/langchain_community/cross_encoders/huggingface.py
Kenneth Choe f98d7f7494
langchain[minor], community[minor]: add CrossEncoderReranker with HuggingFaceCrossEncoder and SagemakerEndpointCrossEncoder (#13687)
- **Description:** Support reranking based on cross encoder models
available from HuggingFace.
      - Added `CrossEncoder` schema
- Implemented `HuggingFaceCrossEncoder` and
`SagemakerEndpointCrossEncoder`
- Implemented `CrossEncoderReranker` that performs similar functionality
to `CohereRerank`
- Added `cross-encoder-reranker.ipynb` to demonstrate how to use it.
Please let me know if anything else needs to be done to make it visible
on the table-of-contents navigation bar on the left, or on the card list
on [retrievers documentation
page](https://python.langchain.com/docs/integrations/retrievers).
  - **Issue:** N/A
  - **Dependencies:** None other than the existing ones.

---------

Co-authored-by: Kenny Choe <kchoe@amazon.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-31 20:51:31 +00:00

64 lines
1.9 KiB
Python

from typing import Any, Dict, List, Tuple
from langchain_core.pydantic_v1 import BaseModel, Extra, Field
from langchain_community.cross_encoders.base import BaseCrossEncoder
DEFAULT_MODEL_NAME = "BAAI/bge-reranker-base"
class HuggingFaceCrossEncoder(BaseModel, BaseCrossEncoder):
"""HuggingFace cross encoder models.
Example:
.. code-block:: python
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
model_name = "BAAI/bge-reranker-base"
model_kwargs = {'device': 'cpu'}
hf = HuggingFaceCrossEncoder(
model_name=model_name,
model_kwargs=model_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence-transformers`."
) from exc
self.client = sentence_transformers.CrossEncoder(
self.model_name, **self.model_kwargs
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def score(self, text_pairs: List[Tuple[str, str]]) -> List[float]:
"""Compute similarity scores using a HuggingFace transformer model.
Args:
text_pairs: The list of text text_pairs to score the similarity.
Returns:
List of scores, one for each pair.
"""
scores = self.client.predict(text_pairs)
return scores