mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
791d59a2c8
Issue: we have several helper functions to import third-party libraries like import_uptrain in [community.callbacks](https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.import_uptrain.html#langchain_community.callbacks.uptrain_callback.import_uptrain). And we have core.utils.utils.guard_import that works exactly for this purpose. The import_<package> functions work inconsistently and rather be private functions. Change: replaced these functions with the guard_import function. Related to #21133
193 lines
6.3 KiB
Python
193 lines
6.3 KiB
Python
"""Callback handler for Context AI"""
|
|
|
|
import os
|
|
from typing import Any, Dict, List
|
|
from uuid import UUID
|
|
|
|
from langchain_core.callbacks import BaseCallbackHandler
|
|
from langchain_core.messages import BaseMessage
|
|
from langchain_core.outputs import LLMResult
|
|
from langchain_core.utils import guard_import
|
|
|
|
|
|
def import_context() -> Any:
|
|
"""Import the `getcontext` package."""
|
|
return (
|
|
guard_import("getcontext", pip_name="python-context"),
|
|
guard_import("getcontext.token", pip_name="python-context").Credential,
|
|
guard_import(
|
|
"getcontext.generated.models", pip_name="python-context"
|
|
).Conversation,
|
|
guard_import("getcontext.generated.models", pip_name="python-context").Message,
|
|
guard_import(
|
|
"getcontext.generated.models", pip_name="python-context"
|
|
).MessageRole,
|
|
guard_import("getcontext.generated.models", pip_name="python-context").Rating,
|
|
)
|
|
|
|
|
|
class ContextCallbackHandler(BaseCallbackHandler):
|
|
"""Callback Handler that records transcripts to the Context service.
|
|
|
|
(https://context.ai).
|
|
|
|
Keyword Args:
|
|
token (optional): The token with which to authenticate requests to Context.
|
|
Visit https://with.context.ai/settings to generate a token.
|
|
If not provided, the value of the `CONTEXT_TOKEN` environment
|
|
variable will be used.
|
|
|
|
Raises:
|
|
ImportError: if the `context-python` package is not installed.
|
|
|
|
Chat Example:
|
|
>>> from langchain_community.llms import ChatOpenAI
|
|
>>> from langchain_community.callbacks import ContextCallbackHandler
|
|
>>> context_callback = ContextCallbackHandler(
|
|
... token="<CONTEXT_TOKEN_HERE>",
|
|
... )
|
|
>>> chat = ChatOpenAI(
|
|
... temperature=0,
|
|
... headers={"user_id": "123"},
|
|
... callbacks=[context_callback],
|
|
... openai_api_key="API_KEY_HERE",
|
|
... )
|
|
>>> messages = [
|
|
... SystemMessage(content="You translate English to French."),
|
|
... HumanMessage(content="I love programming with LangChain."),
|
|
... ]
|
|
>>> chat.invoke(messages)
|
|
|
|
Chain Example:
|
|
>>> from langchain.chains import LLMChain
|
|
>>> from langchain_community.chat_models import ChatOpenAI
|
|
>>> from langchain_community.callbacks import ContextCallbackHandler
|
|
>>> context_callback = ContextCallbackHandler(
|
|
... token="<CONTEXT_TOKEN_HERE>",
|
|
... )
|
|
>>> human_message_prompt = HumanMessagePromptTemplate(
|
|
... prompt=PromptTemplate(
|
|
... template="What is a good name for a company that makes {product}?",
|
|
... input_variables=["product"],
|
|
... ),
|
|
... )
|
|
>>> chat_prompt_template = ChatPromptTemplate.from_messages(
|
|
... [human_message_prompt]
|
|
... )
|
|
>>> callback = ContextCallbackHandler(token)
|
|
>>> # Note: the same callback object must be shared between the
|
|
... LLM and the chain.
|
|
>>> chat = ChatOpenAI(temperature=0.9, callbacks=[callback])
|
|
>>> chain = LLMChain(
|
|
... llm=chat,
|
|
... prompt=chat_prompt_template,
|
|
... callbacks=[callback]
|
|
... )
|
|
>>> chain.run("colorful socks")
|
|
"""
|
|
|
|
def __init__(self, token: str = "", verbose: bool = False, **kwargs: Any) -> None:
|
|
(
|
|
self.context,
|
|
self.credential,
|
|
self.conversation_model,
|
|
self.message_model,
|
|
self.message_role_model,
|
|
self.rating_model,
|
|
) = import_context()
|
|
|
|
token = token or os.environ.get("CONTEXT_TOKEN") or ""
|
|
|
|
self.client = self.context.ContextAPI(credential=self.credential(token))
|
|
|
|
self.chain_run_id = None
|
|
|
|
self.llm_model = None
|
|
|
|
self.messages: List[Any] = []
|
|
self.metadata: Dict[str, str] = {}
|
|
|
|
def on_chat_model_start(
|
|
self,
|
|
serialized: Dict[str, Any],
|
|
messages: List[List[BaseMessage]],
|
|
*,
|
|
run_id: UUID,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Run when the chat model is started."""
|
|
llm_model = kwargs.get("invocation_params", {}).get("model", None)
|
|
if llm_model is not None:
|
|
self.metadata["model"] = llm_model
|
|
|
|
if len(messages) == 0:
|
|
return
|
|
|
|
for message in messages[0]:
|
|
role = self.message_role_model.SYSTEM
|
|
if message.type == "human":
|
|
role = self.message_role_model.USER
|
|
elif message.type == "system":
|
|
role = self.message_role_model.SYSTEM
|
|
elif message.type == "ai":
|
|
role = self.message_role_model.ASSISTANT
|
|
|
|
self.messages.append(
|
|
self.message_model(
|
|
message=message.content,
|
|
role=role,
|
|
)
|
|
)
|
|
|
|
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
|
"""Run when LLM ends."""
|
|
if len(response.generations) == 0 or len(response.generations[0]) == 0:
|
|
return
|
|
|
|
if not self.chain_run_id:
|
|
generation = response.generations[0][0]
|
|
self.messages.append(
|
|
self.message_model(
|
|
message=generation.text,
|
|
role=self.message_role_model.ASSISTANT,
|
|
)
|
|
)
|
|
|
|
self._log_conversation()
|
|
|
|
def on_chain_start(
|
|
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
|
|
) -> None:
|
|
"""Run when chain starts."""
|
|
self.chain_run_id = kwargs.get("run_id", None)
|
|
|
|
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
|
|
"""Run when chain ends."""
|
|
self.messages.append(
|
|
self.message_model(
|
|
message=outputs["text"],
|
|
role=self.message_role_model.ASSISTANT,
|
|
)
|
|
)
|
|
|
|
self._log_conversation()
|
|
|
|
self.chain_run_id = None
|
|
|
|
def _log_conversation(self) -> None:
|
|
"""Log the conversation to the context API."""
|
|
if len(self.messages) == 0:
|
|
return
|
|
|
|
self.client.log.conversation_upsert(
|
|
body={
|
|
"conversation": self.conversation_model(
|
|
messages=self.messages,
|
|
metadata=self.metadata,
|
|
)
|
|
}
|
|
)
|
|
|
|
self.messages = []
|
|
self.metadata = {}
|