mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
91 lines
2.7 KiB
Python
91 lines
2.7 KiB
Python
"""Wrapper around Bookend AI embedding models."""
|
|
|
|
import json
|
|
from typing import Any, List
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
|
|
API_URL = "https://api.bookend.ai/"
|
|
DEFAULT_TASK = "embeddings"
|
|
PATH = "/models/predict"
|
|
|
|
|
|
class BookendEmbeddings(BaseModel, Embeddings):
|
|
"""Bookend AI sentence_transformers embedding models.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import BookendEmbeddings
|
|
|
|
bookend = BookendEmbeddings(
|
|
domain={domain}
|
|
api_token={api_token}
|
|
model_id={model_id}
|
|
)
|
|
bookend.embed_documents([
|
|
"Please put on these earmuffs because I can't you hear.",
|
|
"Baby wipes are made of chocolate stardust.",
|
|
])
|
|
bookend.embed_query(
|
|
"She only paints with bold colors; she does not like pastels."
|
|
)
|
|
"""
|
|
|
|
domain: str
|
|
"""Request for a domain at https://bookend.ai/ to use this embeddings module."""
|
|
api_token: str
|
|
"""Request for an API token at https://bookend.ai/ to use this embeddings module."""
|
|
model_id: str
|
|
"""Embeddings model ID to use."""
|
|
auth_header: dict = Field(default_factory=dict)
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
super().__init__(**kwargs)
|
|
self.auth_header = {"Authorization": "Basic {}".format(self.api_token)}
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed documents using a Bookend deployed embeddings model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
result = []
|
|
headers = self.auth_header
|
|
headers["Content-Type"] = "application/json; charset=utf-8"
|
|
params = {
|
|
"model_id": self.model_id,
|
|
"task": DEFAULT_TASK,
|
|
}
|
|
|
|
for text in texts:
|
|
data = json.dumps(
|
|
{"text": text, "question": None, "context": None, "instruction": None}
|
|
)
|
|
r = requests.request(
|
|
"POST",
|
|
API_URL + self.domain + PATH,
|
|
headers=headers,
|
|
params=params,
|
|
data=data,
|
|
)
|
|
result.append(r.json()[0]["data"])
|
|
|
|
return result
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed a query using a Bookend deployed embeddings model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
return self.embed_documents([text])[0]
|