langchain/libs/community/langchain_community/document_compressors/jina_rerank.py
Joan Fontanals baefbfb14e
community[mionr]: add Jina Reranker in retrievers module (#19406)
- **Description:** Adapt JinaEmbeddings to run with the new Jina AI
Rerank API
- **Twitter handle:** https://twitter.com/JinaAI_


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-25 10:27:10 -07:00

126 lines
4.2 KiB
Python

from __future__ import annotations
from copy import deepcopy
from typing import Any, Dict, List, Optional, Sequence, Union
import requests
from langchain_core.callbacks import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.pydantic_v1 import Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
JINA_API_URL: str = "https://api.jina.ai/v1/rerank"
class JinaRerank(BaseDocumentCompressor):
"""Document compressor that uses `Jina Rerank API`."""
session: Any = None
"""Requests session to communicate with API."""
top_n: Optional[int] = 3
"""Number of documents to return."""
model: str = "jina-reranker-v1-base-en"
"""Model to use for reranking."""
jina_api_key: Optional[str] = None
"""Jina API key. Must be specified directly or via environment variable
JINA_API_KEY."""
user_agent: str = "langchain"
"""Identifier for the application making the request."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
jina_api_key = get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY")
user_agent = values.get("user_agent", "langchain")
session = requests.Session()
session.headers.update(
{
"Authorization": f"Bearer {jina_api_key}",
"Accept-Encoding": "identity",
"Content-type": "application/json",
"user-agent": user_agent,
}
)
values["session"] = session
return values
def rerank(
self,
documents: Sequence[Union[str, Document, dict]],
query: str,
*,
model: Optional[str] = None,
top_n: Optional[int] = -1,
max_chunks_per_doc: Optional[int] = None,
) -> List[Dict[str, Any]]:
"""Returns an ordered list of documents ordered by their relevance to the provided query.
Args:
query: The query to use for reranking.
documents: A sequence of documents to rerank.
model: The model to use for re-ranking. Default to self.model.
top_n : The number of results to return. If None returns all results.
Defaults to self.top_n.
max_chunks_per_doc : The maximum number of chunks derived from a document.
""" # noqa: E501
if len(documents) == 0: # to avoid empty api call
return []
docs = [
doc.page_content if isinstance(doc, Document) else doc for doc in documents
]
model = model or self.model
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
data = {
"query": query,
"documents": docs,
"model": model,
"top_n": top_n,
}
resp = self.session.post(
JINA_API_URL,
json=data,
).json()
if "results" not in resp:
raise RuntimeError(resp["detail"])
results = resp["results"]
result_dicts = []
for res in results:
result_dicts.append(
{"index": res["index"], "relevance_score": res["relevance_score"]}
)
return result_dicts
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""
Compress documents using Jina's Rerank API.
Args:
documents: A sequence of documents to compress.
query: The query to use for compressing the documents.
callbacks: Callbacks to run during the compression process.
Returns:
A sequence of compressed documents.
"""
compressed = []
for res in self.rerank(documents, query):
doc = documents[res["index"]]
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
doc_copy.metadata["relevance_score"] = res["relevance_score"]
compressed.append(doc_copy)
return compressed