mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
b0ef5e778a
Thank you for contributing to LangChain! - [X] **PR title**: "package: description" - Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" **Description:** Fix ChatDatabricsk in case that streaming response doesn't have role field in delta chunk - [ ] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [X] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, hwchase17. --------- Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
298 lines
9.9 KiB
Python
298 lines
9.9 KiB
Python
import logging
|
|
from typing import Any, Dict, Iterator, List, Mapping, Optional, cast
|
|
from urllib.parse import urlparse
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models import BaseChatModel
|
|
from langchain_core.language_models.base import LanguageModelInput
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
FunctionMessage,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import (
|
|
Field,
|
|
PrivateAttr,
|
|
)
|
|
from langchain_core.runnables import RunnableConfig
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ChatMlflow(BaseChatModel):
|
|
"""`MLflow` chat models API.
|
|
|
|
To use, you should have the `mlflow[genai]` python package installed.
|
|
For more information, see https://mlflow.org/docs/latest/llms/deployments.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatMlflow
|
|
|
|
chat = ChatMlflow(
|
|
target_uri="http://localhost:5000",
|
|
endpoint="chat",
|
|
temperature-0.1,
|
|
)
|
|
"""
|
|
|
|
endpoint: str
|
|
"""The endpoint to use."""
|
|
target_uri: str
|
|
"""The target URI to use."""
|
|
temperature: float = 0.0
|
|
"""The sampling temperature."""
|
|
n: int = 1
|
|
"""The number of completion choices to generate."""
|
|
stop: Optional[List[str]] = None
|
|
"""The stop sequence."""
|
|
max_tokens: Optional[int] = None
|
|
"""The maximum number of tokens to generate."""
|
|
extra_params: dict = Field(default_factory=dict)
|
|
"""Any extra parameters to pass to the endpoint."""
|
|
_client: Any = PrivateAttr()
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
super().__init__(**kwargs)
|
|
self._validate_uri()
|
|
try:
|
|
from mlflow.deployments import get_deploy_client
|
|
|
|
self._client = get_deploy_client(self.target_uri)
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Failed to create the client. "
|
|
f"Please run `pip install mlflow{self._mlflow_extras}` to install "
|
|
"required dependencies."
|
|
) from e
|
|
|
|
@property
|
|
def _mlflow_extras(self) -> str:
|
|
return "[genai]"
|
|
|
|
def _validate_uri(self) -> None:
|
|
if self.target_uri == "databricks":
|
|
return
|
|
allowed = ["http", "https", "databricks"]
|
|
if urlparse(self.target_uri).scheme not in allowed:
|
|
raise ValueError(
|
|
f"Invalid target URI: {self.target_uri}. "
|
|
f"The scheme must be one of {allowed}."
|
|
)
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
params: Dict[str, Any] = {
|
|
"target_uri": self.target_uri,
|
|
"endpoint": self.endpoint,
|
|
"temperature": self.temperature,
|
|
"n": self.n,
|
|
"stop": self.stop,
|
|
"max_tokens": self.max_tokens,
|
|
"extra_params": self.extra_params,
|
|
}
|
|
return params
|
|
|
|
def _prepare_inputs(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> Dict[str, Any]:
|
|
message_dicts = [
|
|
ChatMlflow._convert_message_to_dict(message) for message in messages
|
|
]
|
|
data: Dict[str, Any] = {
|
|
"messages": message_dicts,
|
|
"temperature": self.temperature,
|
|
"n": self.n,
|
|
**self.extra_params,
|
|
**kwargs,
|
|
}
|
|
if stop := self.stop or stop:
|
|
data["stop"] = stop
|
|
if self.max_tokens is not None:
|
|
data["max_tokens"] = self.max_tokens
|
|
|
|
return data
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
data = self._prepare_inputs(
|
|
messages,
|
|
stop,
|
|
**kwargs,
|
|
)
|
|
resp = self._client.predict(endpoint=self.endpoint, inputs=data)
|
|
return ChatMlflow._create_chat_result(resp)
|
|
|
|
def stream(
|
|
self,
|
|
input: LanguageModelInput,
|
|
config: Optional[RunnableConfig] = None,
|
|
*,
|
|
stop: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[BaseMessageChunk]:
|
|
# We need to override `stream` to handle the case
|
|
# that `self._client` does not implement `predict_stream`
|
|
if not hasattr(self._client, "predict_stream"):
|
|
# MLflow deployment client does not implement streaming,
|
|
# so use default implementation
|
|
yield cast(
|
|
BaseMessageChunk, self.invoke(input, config=config, stop=stop, **kwargs)
|
|
)
|
|
else:
|
|
yield from super().stream(input, config, stop=stop, **kwargs)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
data = self._prepare_inputs(
|
|
messages,
|
|
stop,
|
|
**kwargs,
|
|
)
|
|
# TODO: check if `_client.predict_stream` is available.
|
|
chunk_iter = self._client.predict_stream(endpoint=self.endpoint, inputs=data)
|
|
first_chunk_role = None
|
|
for chunk in chunk_iter:
|
|
choice = chunk["choices"][0]
|
|
|
|
chunk_delta = choice["delta"]
|
|
if first_chunk_role is None:
|
|
first_chunk_role = chunk_delta.get("role")
|
|
chunk = ChatMlflow._convert_delta_to_message_chunk(
|
|
chunk_delta, first_chunk_role
|
|
)
|
|
|
|
generation_info = {}
|
|
if finish_reason := choice.get("finish_reason"):
|
|
generation_info["finish_reason"] = finish_reason
|
|
if logprobs := choice.get("logprobs"):
|
|
generation_info["logprobs"] = logprobs
|
|
|
|
chunk = ChatGenerationChunk(
|
|
message=chunk, generation_info=generation_info or None
|
|
)
|
|
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs)
|
|
|
|
yield chunk
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
return self._default_params
|
|
|
|
def _get_invocation_params(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
"""Get the parameters used to invoke the model FOR THE CALLBACKS."""
|
|
return {
|
|
**self._default_params,
|
|
**super()._get_invocation_params(stop=stop, **kwargs),
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "mlflow-chat"
|
|
|
|
@staticmethod
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
role = _dict["role"]
|
|
content = _dict["content"]
|
|
if role == "user":
|
|
return HumanMessage(content=content)
|
|
elif role == "assistant":
|
|
return AIMessage(content=content)
|
|
elif role == "system":
|
|
return SystemMessage(content=content)
|
|
else:
|
|
return ChatMessage(content=content, role=role)
|
|
|
|
@staticmethod
|
|
def _convert_delta_to_message_chunk(
|
|
_dict: Mapping[str, Any], default_role: str
|
|
) -> BaseMessageChunk:
|
|
role = _dict.get("role", default_role)
|
|
content = _dict["content"]
|
|
if role == "user":
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant":
|
|
return AIMessageChunk(content=content)
|
|
elif role == "system":
|
|
return SystemMessageChunk(content=content)
|
|
else:
|
|
return ChatMessageChunk(content=content, role=role)
|
|
|
|
@staticmethod
|
|
def _raise_functions_not_supported() -> None:
|
|
raise ValueError(
|
|
"Function messages are not supported by Databricks. Please"
|
|
" create a feature request at https://github.com/mlflow/mlflow/issues."
|
|
)
|
|
|
|
@staticmethod
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, FunctionMessage):
|
|
raise ValueError(
|
|
"Function messages are not supported by Databricks. Please"
|
|
" create a feature request at https://github.com/mlflow/mlflow/issues."
|
|
)
|
|
else:
|
|
raise ValueError(f"Got unknown message type: {message}")
|
|
|
|
if "function_call" in message.additional_kwargs:
|
|
ChatMlflow._raise_functions_not_supported()
|
|
if message.additional_kwargs:
|
|
logger.warning(
|
|
"Additional message arguments are unsupported by Databricks"
|
|
" and will be ignored: %s",
|
|
message.additional_kwargs,
|
|
)
|
|
return message_dict
|
|
|
|
@staticmethod
|
|
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
|
|
generations = []
|
|
for choice in response["choices"]:
|
|
message = ChatMlflow._convert_dict_to_message(choice["message"])
|
|
usage = choice.get("usage", {})
|
|
gen = ChatGeneration(
|
|
message=message,
|
|
generation_info=usage,
|
|
)
|
|
generations.append(gen)
|
|
|
|
usage = response.get("usage", {})
|
|
return ChatResult(generations=generations, llm_output=usage)
|