mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
3f48eed5bd
Signed-off-by: Filip Haltmayer <filip.haltmayer@zilliz.com> Signed-off-by: Frank Liu <frank.liu@zilliz.com> Co-authored-by: Filip Haltmayer <81822489+filip-halt@users.noreply.github.com> Co-authored-by: Frank Liu <frank@frankzliu.com>
54 lines
1.8 KiB
Python
54 lines
1.8 KiB
Python
"""Test Milvus functionality."""
|
|
from typing import List, Optional
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.vectorstores import Milvus
|
|
from tests.integration_tests.vectorstores.fake_embeddings import (
|
|
FakeEmbeddings,
|
|
fake_texts,
|
|
)
|
|
|
|
|
|
def _milvus_from_texts(metadatas: Optional[List[dict]] = None) -> Milvus:
|
|
return Milvus.from_texts(
|
|
fake_texts,
|
|
FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
connection_args={"host": "127.0.0.1", "port": "19530"},
|
|
)
|
|
|
|
|
|
def test_milvus() -> None:
|
|
"""Test end to end construction and search."""
|
|
docsearch = _milvus_from_texts()
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
def test_milvus_with_score() -> None:
|
|
"""Test end to end construction and search with scores and IDs."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = _milvus_from_texts(metadatas=metadatas)
|
|
output = docsearch.similarity_search_with_score("foo", k=3)
|
|
docs = [o[0] for o in output]
|
|
scores = [o[1] for o in output]
|
|
assert docs == [
|
|
Document(page_content="foo", metadata={"page": 0}),
|
|
Document(page_content="bar", metadata={"page": 1}),
|
|
Document(page_content="baz", metadata={"page": 2}),
|
|
]
|
|
assert scores[0] < scores[1] < scores[2]
|
|
|
|
|
|
def test_milvus_max_marginal_relevance_search() -> None:
|
|
"""Test end to end construction and MRR search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = _milvus_from_texts(metadatas=metadatas)
|
|
output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
|
|
assert output == [
|
|
Document(page_content="foo", metadata={"page": 0}),
|
|
Document(page_content="baz", metadata={"page": 2}),
|
|
]
|