langchain/libs/community/tests/integration_tests/utilities/test_pubmed.py
Eugene Yurtsev 25fbe356b4
community[patch]: upgrade to recent version of mypy (#21616)
This PR upgrades community to a recent version of mypy. It inserts type:
ignore on all existing failures.
2024-05-13 14:55:07 -04:00

166 lines
5.5 KiB
Python

"""Integration test for PubMed API Wrapper."""
from typing import Any, List
import pytest
from langchain_core.documents import Document
from langchain_core.tools import BaseTool
from langchain_community.tools import PubmedQueryRun
from langchain_community.utilities import PubMedAPIWrapper
xmltodict = pytest.importorskip("xmltodict")
@pytest.fixture
def api_client() -> PubMedAPIWrapper:
return PubMedAPIWrapper() # type: ignore[call-arg]
def test_run_success(api_client: PubMedAPIWrapper) -> None:
"""Test that returns the correct answer"""
search_string = (
"Examining the Validity of ChatGPT in Identifying "
"Relevant Nephrology Literature"
)
output = api_client.run(search_string)
test_string = (
"Examining the Validity of ChatGPT in Identifying "
"Relevant Nephrology Literature: Findings and Implications"
)
assert test_string in output
assert len(output) == api_client.doc_content_chars_max
def test_run_returns_no_result(api_client: PubMedAPIWrapper) -> None:
"""Test that gives no result."""
output = api_client.run("1605.08386WWW")
assert "No good PubMed Result was found" == output
def test_retrieve_article_returns_book_abstract(api_client: PubMedAPIWrapper) -> None:
"""Test that returns the excerpt of a book."""
output_nolabel = api_client.retrieve_article("25905357", "")
output_withlabel = api_client.retrieve_article("29262144", "")
test_string_nolabel = (
"Osteoporosis is a multifactorial disorder associated with low bone mass and "
"enhanced skeletal fragility. Although"
)
assert test_string_nolabel in output_nolabel["Summary"]
assert (
"Wallenberg syndrome was first described in 1808 by Gaspard Vieusseux. However,"
in output_withlabel["Summary"]
)
def test_retrieve_article_returns_article_abstract(
api_client: PubMedAPIWrapper,
) -> None:
"""Test that returns the abstract of an article."""
output_nolabel = api_client.retrieve_article("37666905", "")
output_withlabel = api_client.retrieve_article("37666551", "")
test_string_nolabel = (
"This work aims to: (1) Provide maximal hand force data on six different "
"grasp types for healthy subjects; (2) detect grasp types with maximal "
"force significantly affected by hand osteoarthritis (HOA) in women; (3) "
"look for predictors to detect HOA from the maximal forces using discriminant "
"analyses."
)
assert test_string_nolabel in output_nolabel["Summary"]
test_string_withlabel = (
"OBJECTIVES: To assess across seven hospitals from six different countries "
"the extent to which the COVID-19 pandemic affected the volumes of orthopaedic "
"hospital admissions and patient outcomes for non-COVID-19 patients admitted "
"for orthopaedic care."
)
assert test_string_withlabel in output_withlabel["Summary"]
def test_retrieve_article_no_abstract_available(api_client: PubMedAPIWrapper) -> None:
"""Test that returns 'No abstract available'."""
output = api_client.retrieve_article("10766884", "")
assert "No abstract available" == output["Summary"]
def assert_docs(docs: List[Document]) -> None:
for doc in docs:
assert doc.metadata
assert set(doc.metadata) == {
"Copyright Information",
"uid",
"Title",
"Published",
}
def test_load_success(api_client: PubMedAPIWrapper) -> None:
"""Test that returns one document"""
docs = api_client.load_docs("chatgpt")
assert len(docs) == api_client.top_k_results == 3
assert_docs(docs)
def test_load_returns_no_result(api_client: PubMedAPIWrapper) -> None:
"""Test that returns no docs"""
docs = api_client.load_docs("1605.08386WWW")
assert len(docs) == 0
def test_load_returns_limited_docs() -> None:
"""Test that returns several docs"""
expected_docs = 2
api_client = PubMedAPIWrapper(top_k_results=expected_docs) # type: ignore[call-arg]
docs = api_client.load_docs("ChatGPT")
assert len(docs) == expected_docs
assert_docs(docs)
def test_load_returns_full_set_of_metadata() -> None:
"""Test that returns several docs"""
api_client = PubMedAPIWrapper(load_max_docs=1, load_all_available_meta=True) # type: ignore[call-arg]
docs = api_client.load_docs("ChatGPT")
assert len(docs) == 3
for doc in docs:
assert doc.metadata
assert set(doc.metadata).issuperset(
{"Copyright Information", "Published", "Title", "uid"}
)
def _load_pubmed_from_universal_entry(**kwargs: Any) -> BaseTool:
from langchain.agents.load_tools import load_tools
tools = load_tools(["pubmed"], **kwargs)
assert len(tools) == 1, "loaded more than 1 tool"
return tools[0]
def test_load_pupmed_from_universal_entry() -> None:
pubmed_tool = _load_pubmed_from_universal_entry()
search_string = (
"Examining the Validity of ChatGPT in Identifying "
"Relevant Nephrology Literature"
)
output = pubmed_tool.invoke(search_string)
test_string = (
"Examining the Validity of ChatGPT in Identifying "
"Relevant Nephrology Literature: Findings and Implications"
)
assert test_string in output
def test_load_pupmed_from_universal_entry_with_params() -> None:
params = {
"top_k_results": 1,
}
pubmed_tool = _load_pubmed_from_universal_entry(**params)
assert isinstance(pubmed_tool, PubmedQueryRun)
wp = pubmed_tool.api_wrapper
assert wp.top_k_results == 1, "failed to assert top_k_results"