langchain/libs/community/langchain_community/chat_models/tongyi.py
2024-05-16 15:41:03 +00:00

611 lines
21 KiB
Python

from __future__ import annotations
import asyncio
import functools
import json
import logging
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
Sequence,
Type,
Union,
cast,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
ToolMessage,
ToolMessageChunk,
)
from langchain_core.output_parsers.openai_tools import (
make_invalid_tool_call,
parse_tool_call,
)
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
)
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_core.utils.function_calling import convert_to_openai_tool
from requests.exceptions import HTTPError
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain_community.llms.tongyi import (
agenerate_with_last_element_mark,
check_response,
generate_with_last_element_mark,
)
logger = logging.getLogger(__name__)
def convert_dict_to_message(
_dict: Mapping[str, Any], is_chunk: bool = False
) -> Union[BaseMessage, BaseMessageChunk]:
"""Convert a dict to a message."""
role = _dict["role"]
content = _dict["content"]
if role == "user":
return (
HumanMessageChunk(content=content)
if is_chunk
else HumanMessage(content=content)
)
elif role == "assistant":
tool_calls = []
invalid_tool_calls = []
if "tool_calls" in _dict:
additional_kwargs = {"tool_calls": _dict["tool_calls"]}
for index, value in enumerate(_dict["tool_calls"]):
if is_chunk:
try:
tool_calls.append(
{
"name": value["function"].get("name"),
"args": value["function"].get("arguments"),
"id": value.get("id"),
# Tongyi does not respond with index,
# use index in the list instead
"index": index,
}
)
except KeyError:
pass
else:
try:
parsed_tool = parse_tool_call(value, return_id=True)
if parsed_tool:
tool_calls.append(parsed_tool)
except Exception as e:
invalid_tool_calls.append(make_invalid_tool_call(value, str(e)))
else:
additional_kwargs = {}
return (
AIMessageChunk(
content=content,
additional_kwargs=additional_kwargs,
tool_call_chunks=tool_calls, # type: ignore[arg-type]
id=_dict.get("id"),
)
if is_chunk
else AIMessage(
content=content,
additional_kwargs=additional_kwargs,
tool_calls=tool_calls, # type: ignore[arg-type]
invalid_tool_calls=invalid_tool_calls,
)
)
elif role == "system":
return (
SystemMessageChunk(content=content)
if is_chunk
else SystemMessage(content=content)
)
elif role == "tool":
additional_kwargs = {}
if "name" in _dict:
additional_kwargs["name"] = _dict["name"]
return (
ToolMessageChunk(
content=_dict.get("content", ""),
tool_call_id=_dict.get("tool_call_id"), # type: ignore[arg-type]
additional_kwargs=additional_kwargs,
)
if is_chunk
else ToolMessage(
content=_dict.get("content", ""),
tool_call_id=_dict.get("tool_call_id"), # type: ignore[arg-type]
additional_kwargs=additional_kwargs,
)
)
else:
return (
ChatMessageChunk(role=role, content=content)
if is_chunk
else ChatMessage(role=role, content=content)
)
def convert_message_chunk_to_message(message_chunk: BaseMessageChunk) -> BaseMessage:
"""Convert a message chunk to a message.
Args:
chunk: Message chunk to convert.
Returns:
Message.
"""
if not isinstance(message_chunk, BaseMessageChunk):
return message_chunk
# chunk classes always have the equivalent non-chunk class as their first parent
ignore_keys = ["type"]
if isinstance(message_chunk, AIMessageChunk):
ignore_keys.append("tool_call_chunks")
return message_chunk.__class__.__mro__[1](
**{k: v for k, v in message_chunk.__dict__.items() if k not in ignore_keys}
)
def convert_message_to_dict(message: BaseMessage) -> dict:
"""Convert a message to a dict."""
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "tool_calls" in message.additional_kwargs:
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, ToolMessage):
message_dict = {
"role": "tool",
"tool_call_id": message.tool_call_id,
"content": message.content,
"name": message.name,
}
else:
raise TypeError(f"Got unknown type {message}")
return message_dict
def _create_retry_decorator(llm: ChatTongyi) -> Callable[[Any], Any]:
min_seconds = 1
max_seconds = 4
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterward
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(HTTPError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
class ChatTongyi(BaseChatModel):
"""Alibaba Tongyi Qwen chat models API.
To use, you should have the ``dashscope`` python package installed,
and set env ``DASHSCOPE_API_KEY`` with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatTongyi
Tongyi_chat = ChatTongyi()
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
client: Any #: :meta private:
model_name: str = Field(default="qwen-turbo", alias="model")
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
top_p: float = 0.8
"""Total probability mass of tokens to consider at each step."""
dashscope_api_key: Optional[SecretStr] = Field(None, alias="api_key")
"""Dashscope api key provide by Alibaba Cloud."""
streaming: bool = False
"""Whether to stream the results or not."""
max_retries: int = 10
"""Maximum number of retries to make when generating."""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "tongyi"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["dashscope_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY")
)
try:
import dashscope
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope --upgrade`."
)
try:
values["client"] = dashscope.Generation
except AttributeError:
raise ValueError(
"`dashscope` has no `Generation` attribute, this is likely "
"due to an old version of the dashscope package. Try upgrading it "
"with `pip install --upgrade dashscope`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Tongyi Qwen API."""
return {
"model": self.model_name,
"top_p": self.top_p,
"api_key": cast(SecretStr, self.dashscope_api_key).get_secret_value(),
"result_format": "message",
**self.model_kwargs,
}
def completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(self)
@retry_decorator
def _completion_with_retry(**_kwargs: Any) -> Any:
resp = self.client.call(**_kwargs)
return check_response(resp)
return _completion_with_retry(**kwargs)
def stream_completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(self)
@retry_decorator
def _stream_completion_with_retry(**_kwargs: Any) -> Any:
responses = self.client.call(**_kwargs)
prev_resp = None
for resp in responses:
# If we are streaming without `incremental_output = True`,
# we need to calculate the delta response manually
if _kwargs.get("stream") and not _kwargs.get(
"incremental_output", False
):
if prev_resp is None:
delta_resp = resp
else:
delta_resp = self.subtract_client_response(resp, prev_resp)
prev_resp = resp
yield check_response(delta_resp)
else:
yield check_response(resp)
return _stream_completion_with_retry(**kwargs)
def subtract_client_response(self, resp: Any, prev_resp: Any) -> Any:
"""Subtract prev response from curr response.
Useful when streaming without `incremental_output = True`
"""
resp_copy = json.loads(json.dumps(resp))
choice = resp_copy["output"]["choices"][0]
message = choice["message"]
prev_resp_copy = json.loads(json.dumps(prev_resp))
prev_choice = prev_resp_copy["output"]["choices"][0]
prev_message = prev_choice["message"]
message["content"] = message["content"].replace(prev_message["content"], "")
if message.get("tool_calls"):
for index, tool_call in enumerate(message["tool_calls"]):
function = tool_call["function"]
if prev_message.get("tool_calls"):
prev_function = prev_message["tool_calls"][index]["function"]
function["name"] = function["name"].replace(
prev_function["name"], ""
)
function["arguments"] = function["arguments"].replace(
prev_function["arguments"], ""
)
return resp_copy
async def astream_completion_with_retry(self, **kwargs: Any) -> Any:
"""Because the dashscope SDK doesn't provide an async API,
we wrap `stream_generate_with_retry` with an async generator."""
class _AioTongyiGenerator:
def __init__(self, generator: Any):
self.generator = generator
def __aiter__(self) -> AsyncIterator[Any]:
return self
async def __anext__(self) -> Any:
value = await asyncio.get_running_loop().run_in_executor(
None, self._safe_next
)
if value is not None:
return value
else:
raise StopAsyncIteration
def _safe_next(self) -> Any:
try:
return next(self.generator)
except StopIteration:
return None
async for chunk in _AioTongyiGenerator(
generator=self.stream_completion_with_retry(**kwargs)
):
yield chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
generations = []
if self.streaming:
generation_chunk: Optional[ChatGenerationChunk] = None
for chunk in self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
):
if generation_chunk is None:
generation_chunk = chunk
else:
generation_chunk += chunk
assert generation_chunk is not None
generations.append(self._chunk_to_generation(generation_chunk))
else:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, **kwargs
)
resp = self.completion_with_retry(**params)
generations.append(
ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
)
return ChatResult(
generations=generations,
llm_output={
"model_name": self.model_name,
},
)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
generations = []
if self.streaming:
generation: Optional[ChatGenerationChunk] = None
async for chunk in self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
generations.append(self._chunk_to_generation(generation))
else:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, **kwargs
)
resp = await asyncio.get_running_loop().run_in_executor(
None,
functools.partial(self.completion_with_retry, **params),
)
generations.append(
ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
)
return ChatResult(
generations=generations,
llm_output={
"model_name": self.model_name,
},
)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, stream=True, **kwargs
)
for stream_resp, is_last_chunk in generate_with_last_element_mark(
self.stream_completion_with_retry(**params)
):
choice = stream_resp["output"]["choices"][0]
message = choice["message"]
if (
choice["finish_reason"] == "null"
and message["content"] == ""
and "tool_calls" not in message
):
continue
chunk = ChatGenerationChunk(
**self._chat_generation_from_qwen_resp(
stream_resp, is_chunk=True, is_last_chunk=is_last_chunk
)
)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, stream=True, **kwargs
)
async for stream_resp, is_last_chunk in agenerate_with_last_element_mark(
self.astream_completion_with_retry(**params)
):
chunk = ChatGenerationChunk(
**self._chat_generation_from_qwen_resp(
stream_resp, is_chunk=True, is_last_chunk=is_last_chunk
)
)
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
def _invocation_params(
self, messages: List[BaseMessage], stop: Any, **kwargs: Any
) -> Dict[str, Any]:
params = {**self._default_params, **kwargs}
if stop is not None:
params["stop"] = stop
# According to the Tongyi official docs,
# `incremental_output` with `tools` is not supported yet
if params.get("stream") and not params.get("tools"):
params["incremental_output"] = True
message_dicts = [convert_message_to_dict(m) for m in messages]
# And the `system` message should be the first message if present
system_message_indices = [
i for i, m in enumerate(message_dicts) if m["role"] == "system"
]
if len(system_message_indices) == 1 and system_message_indices[0] != 0:
raise ValueError("System message can only be the first message.")
elif len(system_message_indices) > 1:
raise ValueError("There can be only one system message at most.")
params["messages"] = message_dicts
return params
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
if llm_outputs[0] is None:
return {}
return llm_outputs[0]
@staticmethod
def _chat_generation_from_qwen_resp(
resp: Any, is_chunk: bool = False, is_last_chunk: bool = True
) -> Dict[str, Any]:
# According to the response from dashscope,
# each chunk's `generation_info` overwrites the previous one.
# Besides, The `merge_dicts` method,
# which is used to concatenate `generation_info` in `GenerationChunk`,
# does not support merging of int type values.
# Therefore, we adopt the `generation_info` of the last chunk
# and discard the `generation_info` of the intermediate chunks.
choice = resp["output"]["choices"][0]
message = convert_dict_to_message(choice["message"], is_chunk=is_chunk)
if is_last_chunk:
return dict(
message=message,
generation_info=dict(
finish_reason=choice["finish_reason"],
request_id=resp["request_id"],
token_usage=dict(resp["usage"]),
),
)
else:
return dict(message=message)
@staticmethod
def _chunk_to_generation(chunk: ChatGenerationChunk) -> ChatGeneration:
return ChatGeneration(
message=convert_message_chunk_to_message(chunk.message),
generation_info=chunk.generation_info,
)
def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
"""Bind tool-like objects to this chat model.
Args:
tools: A list of tool definitions to bind to this chat model.
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
models, callables, and BaseTools will be automatically converted to
their schema dictionary representation.
**kwargs: Any additional parameters to pass to the
:class:`~langchain.runnable.Runnable` constructor.
"""
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
return super().bind(tools=formatted_tools, **kwargs)